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Abstract: The paper develops a three-parameter method for approximating the sum of the McLaurin series by its first four 

expansion terms, which allows obtaining analytical approximations for functions that are expanded into a power series. The 

expressions for the approximation parameters (a, b, c) of the exact sum ∑(S) of the geometric power series-base are obtained 

in general form and are determined by the coefficients at the second (A), third (B), and fourth (C) terms of the McLaurin 

series. For series that converge rapidly {their coefficients satisfy the inequality (аn)
2
≥(an‒1×an+1)}, the new method gives the 

real values of the sum ∑(S), and for series that converge slowly {for them (аn)
2
<(an‒1×an+1)}, the method gives the complex-

conjugate roots of the parameters of their sum ∑(S). The paper presents examples of approximate determination of series sums 

by both three-parameter and two-parameter methods based on the analysis of series coefficients. The accuracy of the two- and 

three-parameter methods of approximation of ∑(S) is evaluated on the basis of determining the approximate sums of known 

numerical series (for the number π, the number e, etc.). The new three-parameter method was used to approximate the sum of a 

series whose first terms were obtained by Lord Rayleigh when refining the method of determining the capillary complex of a 

liquid by the capillary rise method. 

Keywords: Sum of the Series Approximation, Three-Parameter Approximation, McLaurin's Sum Series Approximation, 

Sum of Numerical Series Estimation, Rayleigh's Series Decomposition, Rayleigh's Sum Series Calculation 

 

1. Introduction 

In the theoretical analysis of fundamentally important 

regularities that constitute our understanding of a new 

phenomenon, the role of analytical methods remains 

extremely high. Cole [1] notes that their role is also high in 

the qualitative determination of the parameters of physical 

phenomena. Therefore, he points out the importance of 

various methods of perturbation theory, which are the main 

analytical tool for studying nonlinear physical and 

engineering problems. In reality, only a few terms of the 

perturbed expansion can be calculated, usually no more than 

two or three. The resulting series often converge slowly or 

even diverge. Nevertheless, these few terms contain 

significant information from which it is necessary to extract 

the maximum possible, summarizes Van Dyke [2]. 

However, after the appearance of the works of Cantor et al. 

on set theory, mathematics was formed into a single whole, 

i.e., a complete science with its own subject and method. And 

now "refined" mathematicians no longer consider the 

purpose of mathematics to be the development of the 

"language" of natural science, i.e., the apparatus for solving 

problems in the exact sciences [3]. Modern mathematicians 

deal with the problems of the structure of mathematics itself 

and its individual aspects. The problems of a "language" for 

the natural sciences are now dealt with only by specialists in 

applied mathematics. It is this weakening of the interest of 

pure mathematicians in the problems of approximating the 

sum of series that explains why unresolved questions and 

some unsolved problems can still be found in this area of 

higher mathematics. 

2. Literature Review 

Historically, the first method to accelerate the convergence 

of power series is the fractional rational transformation of a 

variable in the form of the Euler transform: х = ε/(1+ε), [2, 

3]. The purpose of the Euler transform is to transfer the 
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feature ε = −1 to an infinitely distant point. In this case, if 

there are no other features in the complex plane, the radius of 

convergence becomes infinite. 

In general, the problem of approximate determination of 

the sum of an infinite series is solved by approximation 

methods ∑(S) by the first few coefficients of the power series 

expansion. 

Among the low-parameter methods for approximating the 

sum of a power series in mechanics, the Shanks method [2] is 

well known. It consists in approximating the sum of the 

McLaurin series by its first three terms. Applying the 

nonlinear Shanks transformation to the first three terms of the 

power series S(ε) = 1+аε+bε2
… gives a simple rational 

fraction: 

2 –
( ,

–

( )
)

a a b
S

a b

ε
ε

⋅+
⋅∑ ≌                         (1) 

which is often a more accurate approximation to the sum of 

the series than its fragment, which is the sum of the first three 

terms. For example, this sum gives the exact value if the 

series is a geometric progression (either convergent or 

divergent). A sequence of series terms is called a geometric 

progression because there is a relationship between adjacent 

terms: that is, each term is the geometric mean of the terms 

preceding it and the term following it. By the way, in the 

fundamental Handbook [4, 5], in the Section of Functional 

Power Series, which has an exact sum, under No. 1, there is a 

series S, which is a geometric progression whose sum is ∑х
k
 

= (1–х)
-1

, provided that x≠1. Thus, we can say that power 

series of the form ∑р(k)·х
k
 – generalize geometric series that 

have an analytical expression for their exact sum. This sum 

∑(S) is finite for x ≠ 1 [4, 5], and the series S(x) diverges at 

the point x → 1 (∑S(x)→∞). 

Other series of geometric type, i.e., those that have an 

analytical expression for their exact sum, can be cited as 

examples: 

a series 2 3 4( ) 2 3 4S x x x x x= + + + +…  has a sum 
2

( ) ,
(1 )

x
S

x
=

−∑                                     (2) 

a series 2 3( ) 1 3 5 7S x x x x= + + + +…  has a sum 
2

1
( )

(1 )

x
S

x

+=
−∑ .                                      (3) 

The most powerful method of approximation is the Pade 

method [5], in which it is carried out within the framework of 

approximating the sum of a series by rational functions. 

However, for many cases, the Pade approximation method is 

not acceptable in principle. For example, when only a few 

expansion terms are obtained in the solution by the small 

parameter method, the coefficients of which must have a 

certain physical interpretation. 

In this sense, the most promising method for 

approximating the sum of a power series by its first three 

terms was the method of Ludanov, whose abstract (9B 832 

DEP) was presented in the journal Mathematics about forty 

years ago (in No. 9 of 1984). In this article, a method of two-

parameter approximation of the McLaurin power series by its 

first three terms was developed. A comparison [6, 7] showed 

that this method was much more accurate than the Pade 

method (ceteris paribus). 

3. Formulation of the Problem 

In cases where the coincidence of only the first two 

derivatives of a formula that approximately describes an exact 

expression or a fragment of a power series in which this 

expression is expanded is sufficient, the optimal solution to the 

problem is the method of two-parameter approximation of the 

sum of the McLaurin series given in the author's article [8]. 

The authors developed a method of two-parameter 

approximation of the McLaurin power series by its first three 

terms in the form of the Nth degree of an arbitrary analytic 

function y(x), in which the variable x is written as the product 

of the new variable ε and the parameter M (x = M·ε). Such a 

substitution makes it possible to "stretch" or "compress" the 

variable x and get another parameter when constructing a 

multi-parameter approximation expression. The point is that 

each additional approximation parameter gives a sharp 

increase in the accuracy of the approximation. For example, 

the error of a two-parameter approximation [8] is estimated 

as R(x
3
), while for a three-parameter approximation, it is 

obvious that the error will be an order of magnitude lower 

than R(x
4
). 

The most promising option for developing a three-

parameter approximation is the geometric-type McLaurin 

power series S(x), presented in Dwight's Handbook [9]: 

( ) 2 31 2( ) ( )S х х х х⋅= + ⋅ ⋅+ + + + +…а а b а b      (4) 

It also has an analytical expression for the exact sum: 

2

2

( – )
(

·
1

(1
)

)

х х
S

х

⋅ += +
−∑

а b а
 provided that x ≠ 1.          (5) 

This power series S and the generalized expression of its 

sum ∑(S) already include two parameters (a and b), and if we 

try to include the third parameter c in the expression S and 

∑(S), we can obtain a generalized expression for the 

approximant of the sum of the McLaurin series by its first 

four terms: 

( ) 2 31    ,S х А х В х С х= + ⋅ + ⋅ + ⋅ + …  where ( ) f , , .( ),S х х A B C∑ ≌                                  (6) 
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4. Research Results 

4.1. Approximation of the Sum of the Mclaurin Series by 

the First Four Terms 

Here we will use a technique that was used in the author's 

previous work [8]. If the variable x includes the multiplier c, 

we get the "compressed" or "stretched" variable ε in the form 

х=ε/с. Substituting the new variable ε/с instead of x (this is 

convenient for obtaining the same dimensionality), we obtain 

the expression for the three-parameter approximation: 

( )
2 3

( ) (1 )2S х S
ε ε ε ε     → = + ⋅ + + + +  ⋅       ⋅ +…
       

а а
с

b а b
с с с

                                           (7) 

Thus, here we have a modified power series S(ε), which 

has a different expression for its exact sum ∑(S): 

2 3

2 3

2
=1(  ) S ε ε ε ε⋅ ⋅ ⋅++ + + +…а + b а ba

c с с
     (8) 

Let's introduce the notations: а/с = А, (а+b)/с
2
 = В, and 

(а+2b)/с
3
 = С, substitute them into the exact sum of the 

series ∑(S), and then multiply the numerator and 

denominator of the fraction by с
2
 and after the reductions we 

get the modified series and the estimate of its sum: 

2 3( ,) 1S А В Сε ε ε ε= + ⋅ + ⋅ + ⋅ + …                (9) 

2

2
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( )
S

ε εε
ε

⋅ + − ⋅⋅
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а с b a

с
≌ 1 +                (10) 

We also get a system of three equations with three 

unknowns a, b, and c: 

2

3

/

/

2

( )

( ) /

А

В

С

=


= +
 = +

а с

а b с

а b с

                      (11) 

By solving the resulting system of equations, we can 

express the coefficients of the approximated series A, B, and 

C through lowercase letters - the parameters of the sum of the 

series a, b and c. The definition of expressions for a, b and c 

through the coefficients A, B, and C is as follows. Since the 

small b is included in only two equations of the system out of 

three, by transforming the second and third equations of the 

system, we find b from them, and by equating them - we 

exclude it from the system. Then, from the first designation 

of the coefficient A, we find c and, substituting the value of 

а/А instead, we obtain a quadratic equation for a, solving 

which we find the roots: 

2
1,2 ·[ ( ) ],В В А

A
С

C
= ± − ⋅ 
 
 

а  where Det=В2-А·С.    (12) 

Based on the found parameter a, it is easy to find the 

others from the above notation: с = А/а, and b = В·с
2
-а. If 

the root expressions of а1,2 have a negative root expression 

(Det=В
2
-А·С) Det<0, then there will be complex-conjugate 

roots, and the expression of the sum of the series ∑(S) will 

also be complex - but these solutions are not considered in 

this paper. 

4.2. Approximating the Sum of Number Series to Calculate 

the Number π 

More than six centuries ago, mathematicians invented 

series and began to use them to calculate mathematical 

constants, including the number π. To test the accuracy of the 

approximation of these series using two- and three-parameter 

methods, let's try to determine their sums and estimate the 

error. 

Example 1. 

As a first example, let's consider probably the most famous 

series in mathematics - the numerical series of Ramadge of 

Sanhavara, obtained by him in early 1400 AD [10]. It is a 

series of inverse values of odd numbers of a normal 

numerical sequence, the sum of which was first used by 

Ramaja to accurately calculate the number π: 

1 1 1 1
1 ,

3 5 7 9
S = − + − + +…  where ( ) .

4
S

π=∑           (13) 

Let's transform this number series into the McLaurin 

series: 

2 3 41 1 1 1
1 ,

3 5 7 9
S x х х х= − + − + +…  where x=1.          (14) 

Let's estimate the value of π by approximating the sum of 

this series using different methods: the two-parameter 

methods of Shanks (for him, a = -1/3; b = +1/5), and the 

author (MA No. 1 - using Newton's binomial) and the three-

parameter approximation method (MA No. 2) presented 

above. 

The calculation of the number π by the Shanks method 

yields the following values: π ≌ 19/6, which is written in 

decimal form as: π ≌ 3.1(6), i.e., it has one correct decimal 

place and a relative error of δ = 0.8%. 

The sum expression for the two-parameter approximation 

based on Newton's binomial is as follows: 

N( ) ( ) ,1 MS х+ ⋅∑ ≌  where x = 1; M = 13/15, N = -5/13.                                              (15) 
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As a result, for the sum of the series, we get π ≌ 

4·(15/28)
13/5

 = 3,1463. This result already has two correct 

decimal places and a relative error of δ = 0.14%, which is 

several times lower than in the Shanks method. 

An attempt to calculate π within the new three-parameter 

approximation leads to complex-conjugate roots for the sum 

parameters ∑(S), since the determinant of the expression of 

the roots а1,2 is negative: Det = (В
2
-А·С)<0. 

Example 2. 

Since the above number series converges slowly, we will 

use the number series converted from it by the same Ramaja 

with a faster convergence rate to calculate its sum (i.e., the 

number π): 

2 31 1 1
1 1 ,

9 45 189 3 5 7
S = − + − +… = − + − +…(⅓) (⅓) (⅓)                                               (16) 

( ) ,
12

S
π=∑  where in the explicit form ( 12 .) ( )Sπ ×= ∑                                          (17) 

Let us transform this number series into the McLaurin 

series for x = ⅓, where 

 x = ⅓, a = -1/3; b = +1/5.                   (18) 

The calculation of the number π by the Shanks method 

gives the value for: π≌ (7/3)2/ 3 , which is written in 

decimal form as: π ≌ 3.1433, i.e., it has two correct decimal 

places and a relative error of δ = 1,8·10-3. 

The calculation of π by the MA method No. 1 gives the 

value: π ≌ (49/54)5/13· 12 , which is written in decimal form 

as: 3.1419, that is, it has three correct decimal places and a 

relative error of δ = 1,1·10-4, which is an order of magnitude 

lower than the approximation error by the Shanks method. 

Comparison of the results of calculating the number by 

Shanks' method (3.1433...) and the author's method (MA No. 

1) based on Newton's binomial (3.1419...) showed that 

Shanks' method gives an accuracy of determining the number 

π slightly lower than in Archimedes' estimate (22/7 = 

3.1422...), and the estimate by MA No. 1, on the contrary, 

gives an accuracy higher than 22/7 and even one more 

correct decimal place. Therefore, when analyzing the 

accuracy of the approximation, we will limit ourselves to the 

author's methods (two-parameter MA No. 1 and three-

parameter MA No. 2). 

The use of the three-parameter method to approximate the 

sum of this series leads to the fact that complex-conjugate 

numbers appear again in the expression of the approximate 

sum. It is interesting that even with complex roots of the 

parameters of the sum ∑(S) of the geometric type series (18) 

by the method of MA No. 2 - the sum of the Ramage number 

series for the value π is valid and can be easily calculated by 

MA No. 1 (3,141...). 

Example 3. 

Since the transformed series cannot be used to calculate 

the number π within the three-parameter approximation of its 

sum (Det<0), let's try to use another transformation of the 

number series (which is expected to give a series with Det>0) 

- find its inverse value: S → S-1. The idea is that if the 

coefficient A does not change in absolute value when 

transforming the power series S into the inverse series S-1 - 

then its sign A definitely changes to the opposite. Therefore, 

there is a possibility that the signs before the first (A) and 

third (C) coefficients will become different, and the sign of 

their product A·C in the expression Det=(В2-А·С) will 

become negative. Then we can get Det>0 for S-1. 

From the expression ∑(S) = π/ 12  = 1/∑(S-1) it follows 

that: π = ( 12 )/∑(S-1). Let's transform the Ramaji series S 

into the McLaurin series S(x) for x = 1, and then the series 

S(x) = 1 - х/9 + х2/45 - х3/189 +... transform the inverse of it 

S-1 using the standard operation "series exponentiation" (see 

Dwight [9]). As a result of the transformation, we obtain the 

McLaurin series S-1(х): 

( )1 2 31 4 208
 1 ,

9 405 25515
S х х х х− = + − − +…  where x = 1.                                           (19) 

Now, in the case of Det>0, it is possible to approximate the 

sum of this series within the framework of the three-

parameter approximation of MA No. 2. 

The coefficients of the corresponding McLaurin series are 

as follows: A = +1/9; B = -4/405; C = -208/25515; (A·C)<0 

and Det>0. We calculate the parameters of the sum of the 

base series ∑(S) using the formula: а1,2 = (А/С)·[B±

2(B A C)− ⋅ ]. The substitution of the mianing gives: а1,2 = 

(-0,1346)⋅[-1± (1 9,2857)+ ] (а1 = +0,5663; а2 = -0,2971), 

for the second parameter c we get с1 = +5,0971; с2 = -2,6740, 

for the third parameter we get: b1 = -0,8229; b2 = +0,2265. 

The calculation of the sum of the inverse series for the first 

set of roots-parameters gives: π=( 12 )/∑(S-1) ≌ 3,1804 

(relative error δ = 1.2%), and for the second set of root-

parameters we get: π = ( 12 )/∑(S-1) ≌ 3,1559, while the 

exact value of π = 3.14159 (relative error δ = 0.45%). 

Thus, calculating the number π based on the inverse of the 

first Ramage series - using a three-parameter approximation 

of its sum - is possible in principle, but gives a higher error (δ 

= 0.45%) due to the additional transformation of the series. 

The new series S
-1

 has better convergence than S, but its first 

terms reflect the sum ∑(S) less accurately. Therefore, here 
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the accuracy of determining the value of π by MA No. 2 was 

lower than the accuracy of its determination by MA No. 1. 

4.3. Approximating the Sum of Number Series from Inverse 

Factorials 

As a first example, let's use a rapidly converging number 

series that is not a familiar variable. It is used to determine 

the number e. 

Example 1. 

The base of natural logarithms, that is, the number е = 

1+∑1/n! [11]. And this series is formed by a sequence of 

inverse factorials of the numbers of the natural series, so 

although it is not familiar, it is fast convergent: 

1

!n
∑ =

1

1!
+

1

2!
+

1

3!
+

1

4!
+… = 1+ 1

2
+

1

6
+ 1

24
+…                                                     (20) 

Let's transform this number series into the McLaurin series S(x) at x = 1: 

S( )x =1+ 1

2
x + 21

6
x + 31

24
x +…, where x = 1.                                                           (21) 

The sum expression for the two-parameter approximation is as follows: 

N( ) ( ) ,S 1 M х+ ⋅∑ ≌  where x = 1, parameters a = +1/2, b = +1/6.                                            (22) 

Find the parameters of the binomial: M = -1/6, and N = -3. 

As a result of the calculations, we get: S(1) ≌ (5/6)
-3

. Or, in 

decimal form, we have e ≌ 1+(1,2)
3
=2.728..., while the 

exact result is e = 2.718. The relative error of the 

approximation by MA No. 1 is only δ = 0.7%. 

And now, in the case of Det>0, we will approximate the 

sum of the same series, but within the framework of the 

three-parameter approximation by MA No. 2. 

The coefficients of the corresponding McLaurin series are 

as follows: A = +1/2; B = +1/6; C = +1/24. Det=(B2-A·C)>0. 

The parameters of the sum ∑(S) of the base series are 

calculated using the formula а1,2 = (А/С)·[B± 2( )B A C− ⋅ ]. 

As a result: а1,2 = 2±1 (а1 = 3; а2 = 1), for the parameter c we 

get с1,2 = 2×(2±1) = 4±2 (с1 = 6; с2 = 2), for the third 

parameter b we get: b1 = 3; b2 = -1/3. 

The calculation of the refined sum of the series-base for 

the first set of roots-parameters gives e = 1+∑1/n! ≌ 

1+43/25 = 1+1.72 = 2.72, and for the second set of roots-

parameters we get: е = 1+∑(1/n!) ≌ 1+2/3 = 1+1,(6) = 2,(6), 

then the exact result is e = 2.718. 

Thus, the first solution of the three-parameter 

approximation has a relative error of δ = 0.07%. That is, the 

accuracy of determining the number e by the method of MA 

No. 2 is higher than by MA No. 1 - by an order of 

magnitude! 

Example 2. 

As a second example, let's use a rapidly converging 

number series whose coefficients are positive. This number 

series is formed by a sequence of inverse factorials of the 

numbers of the natural series, and only odd ones, obtained by 

decomposing the series of the function sh(x): 

( )sh 1 =
1

1!
+

1

3!
+

1

5!
+

1

7!
+…= 1+

1

6
+

1

120
+

1

5040
+…                                              (23) 

Let's transform this numerical series into the McLaurin series at x = 1: 

S=1+
1

6
x + 21

120
x + 31

5040
x +…, where x = 1.                                                      (24) 

The sum expression for the two-parameter approximation is as follows: 

N( ) ( ) ,S 1 M х+ ⋅∑ ≌  where x=1, series coefficients a = 1/6, b = 1/120.                                     (25) 

We find the parameters of the binomial M = +1/15 and N = 

+5/2. As a result of the substitution, we obtain: S(1) ≌ 

(16/15)5/2. Or in decimal form, ∑(S) ≌ [1.0(6)]2.5 = 1.1751. 

The exact result: sh(1) = 1.1752. The difference between the 

exact result and the estimate of the sum of the series by MA 

No. 1 is only ~10-4. 

And now, in the case of Det>0, we will approximate the 

sum of the same series, but within the framework of the 

three-parameter approximation by MA No. 2. 

The coefficients of the corresponding McLaurin series are 

as follows: A = +1/6; B = +1/120; C = +1/5040. Det=(B2-

A·C)>0. Calculate the parameters of the sum ∑(S) series 

using the formula: а1,2 = (А·В/С)·[1± 2(1 A C )/ В− ⋅ ] 

=7·[1± (11/ 21) ]. As a result: а1,2 = 7±5,0662 (а1 = 

12,0662; а2 = 1,9338), for the parameter c we get: с1,2 = 

а1,2/(1/6) = 6×а1,2 (с1 = 72,397; с2 = 11,603 and for the third 

parameter b1.2 we get: b1 = 31.609; b2 = 0.3099. 
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The calculation of the refined sum ∑(S) ≌ 1+0.1752 = 

1.1752 of the basis series for the first set of roots-parameters 

gives: ∑(S) ≌ 1+0.1752 = 1.1752, while the exact result is 

sh(1) = 1.1752, i.e., we have four correct decimal places. 

4.4. Attempting to Approximate the Sum of Divergent 

Number Series 

Let's consider approximating the sum of divergent 

numerical series in order to determine the possibility of 

obtaining an answer to the question whether the series "as a 

whole" converges or not from a small initial fragment of the 

series. 

Example 1. 

As a first example, let's use probably the most famous 

divergent numerical series - the harmonic series, whose terms 

are the inverse of the numbers of the natural series. 

The harmonic number series got its name because each of 

its terms is related to the previous and the next - by the 

"harmonic mean" ratio: (аn)
-1

 = (½)·[(an‒1)
-1

+(an+1)
-1

]. This 

series has the following form: 

S=1+ 1

2
+

1

3
+ 1

4
+

1

5
+

1

6
+

1

7
+…                 (26) 

Analysis of the sequence of terms in this series shows that 

they are all positive and monotonically decreasing. But it is 

not at all obvious that the harmonic series is divergent, 

although it has long been known (since 1673) that the sum of 

a harmonic number series ∑(S) = ∞. But we need to try to get 

an approximate value of its sum using the approximation 

methods discussed in this article in order to find out how to 

determine from a small fragment of the series whether it is 

converging or diverging. 

This numerical series can be transformed into a McLaurin 

series at a fixed value of the variable x (x = 1): 

S( )x =1+ 1

2
x + 21

3
x + 31

4
x +…, where x = 1, a = 1/2, b = 1/3.                                           (27) 

If we have a fragment of a series in which only the first 

two coefficients (+1/2 and +1/3) are known, then we can use 

the two-parameter method using the Newton binomial to 

approximate it: 

N( ) ( ) ,S 1 M х+ ⋅≈∑  where x = 1.               (28) 

For this fragment of the series, the binomial parameters M 

= -5/6 and N = -3/5. When x = 1, the value of ∑(S) ≈ (1/6)
-3/5

 

or in decimal form ∑(S) ≈ 6
0.6

 = 2.93. 

Thus, the two-parameter method of approximating the sum 

of the series MA No. 1 determines the value of ∑S(1) as the 

final value, i.e., having the values of the first two coefficients 

when estimating the sum of the series is not enough to 

establish that this series is divergent. 

If the first three coefficients (+1/2, +1/3, and +1/4) are 

used to estimate the sum of the series, then we will try to 

use the three-parameter method to approximate the sum of 

the series. Analysis of the coefficients shows that the 

second and fourth coefficients have the same sign. 

Therefore, we need to calculate the determinant, which in 

this case is negative, since Det = (1/3)
2
-(1/2)×(1/4) = 1/9-

1/8 and 1/9<1/8. Thus, the roots of the quadratic equation 

for determining the parameters of the sum are complex-

conjugate, and the expression for the sum of this series is 

complex. Therefore, we cannot use the three-parameter 

approximation here. 

Now let's check how the inverse of the harmonic series 

converges - S
-1

. Using the algorithm given in Dwight's 

Handbook [9], we will find the coefficients: 

1 2 31 4 44
S ( )=1

3 45 945
x x x x− − − − …, х = 1; а = ‒ 1/2, b = ‒ 4/45.                                           (29) 

If we have a fragment of the series in which only the first 

two coefficients (-1/3 and -4/45) are known, then we can use 

the two-parameter method of MA No. 2 using the Newton 

binomial to approximate it: 

1 NS 1 M( ) ( ) ,х− + ⋅≈∑  where x = 1.               (30) 

The parameters of this fragment are M = -5/6 and N = 3/5. 

For x = 1, the value ∑(S
-1

)≈6
-0.6

 or in decimal form ∑(S
-

1
)≈0.341. And the number 0.341 = (2.93)

-1
. 

But if the first three coefficients (+1/3, +1/5, and +1/7) can 

be used to estimate the sum of the series, then we'll try to use 

the three-parameter method of MA No. 2 to approximate the 

sum of the series. Analysis of the coefficients shows that the 

second and fourth coefficients have the same sign. Therefore, 

it is necessary to calculate the determinant, which in this case 

is negative, since the determinant of Dеt = (4/45)
2
 - (-1/3)×(-

44/945) = (16/2025) - (44/2835) and (0.0079)<(0.0155). 

Thus, the roots of the quadratic equation for determining the 

parameters of the sum are complex-conjugate, and the 

expression for the sum of the series is also complex-

conjugate. Therefore, in this case, we will not be able to use 

the three-parameter approximation to summarize the inverse 

series. 

Example 2. 

As a second example, let's use another divergent number 

series with ∑(S) = ∞, which is similar to the harmonic series, 

but only with those terms that contain odd numbers of the 

natural series: 

1 1 1 1
1

3 5 7 9
S = + + + + …                      (31) 

This numerical series S can be transformed into the 
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McLaurin series S(x) at a fixed value of the variable x (x = 1) 

 

 

( ) 2 31 1 1
1

3 5 7
S x x xх = + + + …, where x = 1; a = 1/3, b = 1/5.                                           (32) 

If there is a fragment of the series in which only the first 

two coefficients (+1/3 and +1/5) are known, then the two-

parameter method using the Newton binomial can be used for 

approximation: 

N( ) ( ) ,S 1 M х+ ⋅≈∑  where x = 1.                (33) 

For this fragment, M = -13/15 and N = -5/13. For x = 1, the 

value ∑(S) ≈ (2/15)
-5/13

 or in decimal form ∑(S) ≈ (15/2)
5/13

 = 

2.17. 

Thus, the two-parameter method of approximating the sum 

of the MA series No. 1 determines the value of S(1) as the 

final value, i.e., the values of the first two coefficients are not 

enough to say that this series is divergent. 

If the first three coefficients (+1/3, +1/5, and +1/7) are 

used to estimate the sum of the series, then a three-parameter 

method can be used to approximate the sum of the series. 

Analysis of the coefficients shows that the second and fourth 

coefficients have the same sign. Therefore, it is necessary to 

calculate the determinant, which is negative in this case, 

since Det = (1/5)
2
-(1/3)×(1/7) = 1/25-1/21, but 1/25<1/21. 

Thus, the roots of the quadratic equation for determining the 

parameters of the sum of a series are complex-conjugate, and 

the expression for its sum is also complex-conjugate. 

Therefore, the three-parameter approximation cannot be used 

here either. 

Now let's check whether the inverse of S
-1

 converges to the 

series discussed above. Using the algorithm given in 

Dwight's Handbook [9], we calculate its coefficients: 

1 2 31 4 44
S ( ) 1

3 45 945
x x x x− = − − − …, х = 1; а = ‒ 1/2, b = ‒ 4/45.                                              (34) 

If we have a fragment of the series in which only the first 

two coefficients are known (-1/3 and -4/45), then we can use 

the two-parameter method No. 2 using the Newton binomial 

to approximate it: 

1 NS 1 M( ) ( ) ,х− + ⋅≈∑  where x = 1.               (35) 

For this fragment, M = -13/15, and N = +5/13. The value 

of S(1) ≈ (2/15)
5/13

 or in decimal form ∑(S
-1

) ≈ 0.46. And the 

number 0.46 = (2.17)
-1

. 

But if you use the first three coefficients (+1/3, +1/5 and 

+1/7) to estimate the sum of the series, you can use the three-

parameter method to approximate the sum of the series. 

Analysis of the coefficients shows that the second and fourth 

coefficients have the same sign. Therefore, we need to 

calculate the determinant, which in this case is negative: Dеt 

= (4/45)
2
 - (-1/3)×(-44/945) = (16/2025) - (44/2835) and 

(0.0079)<(0.0155). Thus, the roots of the quadratic equation 

for determining the parameters of the sum are complex-

conjugate, and the expression for the sum of the series is also 

complex-conjugate. Therefore, we cannot use the three-

parameter approximation to summarize the inverse series 

either. 

Conclusion. Both methods (MA No. 1 and No. 2) have 

quite acceptable accuracy for estimating the sum of series, 

and of completely different nature - both numerical and 

power series, in particular, of geometric type. But if MA No. 

1 in all cases has real numbers as sum parameters, then MA 

No. 2 for rapidly converging series {for them (аn)
2
≥(an‒1×an+1 

gives real values of the sum, and for slowly converging and 

diverging series {for them (аn)
2
<(an‒1×an+1)}, it gives 

complex-conjugate roots of their sum parameters. 

Using a two-parameter approximation (MA No. 1), it is 

impossible to determine from a fragment of a power series 

that it is diverging, since it gives a finite number as a result of 

summation, both for converging and diverging series (for 

diverging series, it is incorrect). After all, the exact result of 

sum is ∑(S) = ∞, and ∑(S
-1

) = 0. 

4.5. Three-Parameter Approximation of the Sum of Lord 

Rayleigh's Power Series 

More than a hundred years ago, the main method of 

measuring the surface tension of a liquid was the method of 

raising the liquid in a capillary - a thin glass tube of constant 

radius, provided that r << h, where h is the height of the 

liquid in a vertical capillary. In this case, the experiment 

measures not the distance H from "zero" to the edge of the 

meniscus (it is difficult to fix it), but the distance from the 

liquid level in the vessel to the bottom of the meniscus in the 

capillary. However, the meniscus, which "hangs" on the 

capillary walls due to the wetting forces, forms an edge angle 

θ with them, so it increases the weight of the liquid relative to 

what would occur when measuring h along the edge. This 

makes the problem of accurately determining the "height of 

liquid rise" in a capillary uncertain [12]. 

In 1916, Lord Rayleigh [13] analytically (using the small 

parameter method) solved the problem of determining the 

surface tension of a liquid from the experimental data during 

capillary rise and obtained a formula for the dependence of 

the capillary complex [14] of a liquid а
2
 (а

2
 = 2σ/∆ρg) in the 

form: а
2
=(r·h)×∑S(r/h), where S(r/h) is a fragment of the 

series - i.e., the expansion by the small parameter ε, where ε 

is the ratio (r/h) << 1. Lord Rayleigh obtained the first four 

terms of the power series S, in which the dependence а
2
 = 

(r·h)×f(r, h) is expanded: 
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S
r

h

 
 
 

=1+
1

3
ε – 20,1288ε + 30,1312ε - …, where ε = r/h.                                                (36) 

However, this analytical solution was practically not 

widespread because it includes a fragment of the power 

series, the accuracy of which (in contrast clozed formula 

[15]) was questionable (uncertain) in calculating the sum of 

the resulting expansion ∑S(r/h). 

Therefore, we will first solve the problem of 

approximating the power series (44) by the MA No. 1, using 

only the first three terms of the expansion: 

S
r

h

 
 
 

=1+
1

3
ε – 20,1288ε + …, where ε = r/h.           (37) 

We use Newton's binomial for this purpose: ∑S(x) = (1 + 

М·х)
N
, where M = а·(1-2b/a

2
), and N = (1-2b/a

2
)

-1
, the series 

coefficients are a = +1/3, b = -0.1288. Substitution gives M = 

1.0106. The parameter N = 0.3013. As a result, for ∑S(r/h) 

we obtain: 

2а = ( )·r h × S( ),ε∑  where 0,3013S( ) (1 1,0106 ) .ε ε≅ + ⋅∑                                            (38) 

The above formula (46) can be used as a first 

approximation. The curve of this dependence y = f(ε) can be 

represented in double logarithmic coordinates - the results of 

meniscus elevation in capillaries of different radius r should 

"lie" on a straight line and can be processed statistically, for 

example, by the least squares method: 

2

·
ln

r h

a 
  
 

∼ 0,3013· 1 1,0106 ,
r

ln
h

  + ⋅  
  

             (39) 

where on the ordinate axis we plot the value of у(х) = 

ln[а
2
/(r·h)] and on the abscissa axis - the value of х = ln(1 + 

1,0106·ε). 

Let us approximate the sum of the Rayleigh series by the 

three-parameter method of MA No. 2. First, we calculate the 

determinant by the coefficients of the series: 

S( )ε =1+
1

3
ε – 20,1288ε + 30,1312ε -…, for this fragment Det<0.                                          (40) 

Therefore, the primary series must be transformed: we will 

square it using procedure No. 51.1 from reference [7]. We get 

the expression for the square of the series S
2
(ε): 

2S ( )ε =1+
2

3
ε + 20,  3667ε + 30,1765ε +…                              

                          (41) 

The calculation of the determinant gives: B2 = 0.1345, A·C 

= 0.1177; Det = В2-А·C = +0.01678, i. e. Det > 0 and the 

root 2(В А С)− ⋅ =0.1296. 

For the first parameter a, we get: a1.2 = 

3.7765·(2/3±0.1296). As a result, for the roots we have: a1 = 

3.007, a2 = 2.0284; c1 = 4.5104, c2 = 3.0426; b1 = 4.7156, b2 

= 1.3848. 

Substituting the first set of roots (a1 = 3.007, c1 = 4.5104, 

b1 = 4.7156) into the expression for approximating the sum 

of the series ∑S
2
(r/h) by MA No. 2, we find: 

2 ( / )S r h∑ ≌ 1+
2

1,5622 1,7087

4,5104( )

εε
ε

+⋅
−

, where ε=r/h.                                                     (42) 

Substituting the second set of roots (a2=2.0284, c2=3.0426, b2=1.3848) into the expression for the approximation of the sum 

of the series ∑S
2
(r/h) by MA No. 2, we obtain: 

2 ( / )S r h∑ ≌ 1+
2

6,1717 0,6436

3,0426( )

εε
ε

−⋅
−

, where ε=r/h.                                                    (43) 

Comparison of the two solutions shows that the domain of 

ε = r/h in the first case is 0 <ε< 4.5104, while in the second 

case it is much narrower: 0 <ε< 3.0426 - almost one and a 

half times. Therefore, the choice of the solution is obvious - 

the second solution is rejected, and the first one is taken as a 

basis. The analysis of the first solution showed that its 

accuracy in the range r/h<1 will be quite high, since it is 

much narrower than the range of r/h determination. 

The calculation of the capillary complex should be carried 

out taking into account the fact that we did not use the series 

S, but its square S
2
, so in the expression of the capillary 

complex, we need to find the square root of the sum of the 

series: 
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2а = ( )r h⋅ × { }2S ( )ε∑ = ( )r h⋅ ×
2

1,5622 1,7087
1

4
,

( ),5104

εε
ε

+ ⋅+
  
 

−  
⋅                                           (44) 

where ε=r/h, hence the surface tension: σ=а
2∆ρg/2 (where а

2
 

= 2σ/∆ρg). 

5. Conclusions 

As the analysis of the three-parameter approximation of the 

sum of the McLaurin series (MA No. 2) developed in this 

article - based on a geometric-type series-base - has shown, its 

accuracy is significantly (by an order of magnitude) higher 

than the accuracy of the author's two-parameter approximation 

(MA No. 1) based on the Newton binomial, although MA No. 

1 has a very high accuracy - when evaluating the number π by 

the sum of the series, it gives three correct decimal places, and 

when evaluating the number e, the error is 0.7%. 

Although the approximation accuracy of MA No. 2 is a few 

decimal places higher than that of MA No. 1, it may decrease 

if the primary series must be transformed into a series that 

converges faster to meet the condition а
2
n≤(an‒1×an+1) And in 

this case, the accuracy of approximating the sum of the series 

decreases. This is obviously due to the fact that MA No. 2 is 

based on the generalization of a geometric series with an exact 

sum expression, in which the neighboring terms are related by 

the following relationship: а
2

n=(аn-1×аn+1), unlike MA No. 1, 

where there is no such strict condition. 

The three-parameter approximation is unique in that it 

provides a new quality - it does not allow "summing" divergent 

series, since for both the sum of the primary series ∑S and the 

sum of the inverse series ∑S
-1

 it produces complex-conjugate 

roots in the expression of the parameters relative to the 

expression of the approximation of the sum of the base series. 

It can be said that the use of a three-parameter 

approximation of the sum of a series when interpreting 

fragments of power series obtained by physicists when 

solving nonlinear problems by the small parameter method 

will allow obtaining not only quantitatively more accurate 

results based on them: R(x
4
), but also their qualitatively new 

physical interpretation. 
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