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Abstract: A Lorentz force is generally exerted on a moving charged particle in an external magnetic field. But it is often asked 

whether also a neutral atom can feel a Lorentz force when moving straightly in an external magnetic field. It is shown that this is 

definitely not the case. 
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1. Introduction 

It is well known [1, 2] that a magnetic field B exerts a Lo-

rentz force on a moving particle with charge q,  

FL=q/c�v×B�.                 (1) 

Nevertheless, it is often asked whether a neutral atom can 

also feel a Lorentz force when moving in a magnetic field B. 

Even experts mean sometimes that these atoms feel a Lorentz 

force. The arguments are that a neutral atom consists of 

charged particles (nucleus and electrons) which all feel Lo-

rentz forces, and that the effect of these Lorentz forces on the 

movement of the atom possibly do not cancel each other, 

because the mass of the nucleus is different from the mass of 

the electron, and because the expectation values of the posi-

tions of these particles appear at different positions. The 

Lorentz force is, e.g., discussed in the theory of magnetoelas-

tic spin-phonon modes [3], in which the collective pho-

non-type movements of the atoms in a solid in the presence 

of a magnetic field B is investigated. The theory was origi-

nally formulated for the collective phonon-type movements 

of the charged ions of an ionic ferromagnet in an external 

magnetic field. In this context the appearance of Lorentz 

forces on the moving charged ions is clear. The theory was 

later applied [4] to itinerant ferromagnets like Ni or Fe. In 

these materials the valence electrons build atomic magnetic 

moments, and these atomic magnetic moments produce an 

internal magnetic field. The question then arises whether the 

atoms (which are neutral) feel a Lorentz force in this field. 

However, it was shown that one would have a double count-

ing problem when including the Lorentz forces acting on the 

valence electrons in the magnetic field produced by them-

selves. Therefore only the Lorentz force acting on the unit 

with charge q consisting of the nuclear charge and the charg-

es of the electrons in the closed electronic shells are consid-

ered [4]. The problem of double counting is known in the 

context of many-electron theory. There the electrostatic in-

teraction of an electron with all electrons is described by the 

Hartee potential, which erroneously contains also the interac-

tion energy of this electron with itself. With the so-called 

self-interaction correction [5, 6] it is attempted to correct this. 

However, thereby appears a series of complications. Without 

an exact self-interaction correction there are in some systems 

(e.g., 4f rare-earth elements and transition-metal oxides) 

artificial results, for instance, the favoring of an unrealistic 

delocalized state over a localized state. Therefore artificial 

effects most probably also would appear when the above 

discussed double counting would not be avoided.  

Because in the theory of magnetoelastic spin-phonon 

modes the influence of the Lorentz force on the movement of 

the atoms is taken into account, these modes have 

well-defined angular momenta [3, 4]. In the usual theory of 

linearly-polarized phonons this effect is not taken into ac-

count, and therefore these phonons do not have well-defined 

angular momenta [7]. The question remains whether a neutral 

atom moving in an external field feels a Lorentz force, be-

cause there no double counting problem arises. In the present 
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paper it is shown that this is definitely not the case. One will 

see that this proof is far from being trivial. This proof re-

quires the quantum mechanical calculation which I will pre-

sent in the next Section. There is no other type of proof, e.g., 

by a classical calculation. 

2. Theory 

To investigate the question raised in the Introduction one 

has to perform a quantum mechanical calculation, because an 

atom is a quantum mechanical particle. Thereby the quantum 

mechanical uncertainty relations have to be taken into account. 

If this particle was in a state with well-defined momentum, i.e., 

well-defined velocity, then it would be described by a plane 

wave. Then the position of the atom would not be well-defined, 

the atom could be at all positions with equal probability. This 

would not correspond to the common notion of a particle. To 

construct a state which corresponds to such a notion one has to 

consider a wave packet by a superposition of plane waves with 

various wavevectors. Then the atom would be in a parti-

cle-like state, but neither the position nor the momentum, i.e., 

the velocity would be well-defined. Then it is natural to look 

at the expectation values for the position and for the velocity. 

If the expectation value of the velocity changes in time when 

the atom, i.e., the wavepacket moves in an external magnetic 

field, then the atom experiences a Lorentz force. It is natural to 

describe the motion of the wavepacket by looking at the centre 

of gravity of the moving neutral atom. The movement of this 

centre of gravity can be discussed by placing all masses there 

and by exerting on it the sum of all forces acting on the nu-

cleus and on the various electrons of the neutral atom. Because 

all charged components of the atom feel Lorentz forces when 

the atom moves in an external magnetic field, we have to 

calculate the sum of the expectation values of the individual 

Lorentz forces. Thereby we use Ehrenfest's theorem [8, 9] in 

the form that the expectation value of the position of a quan-

tum mechanical particle obeys a classical law, i.e., it is given 

by Newton's equation of motion  

md�〈r〉/dt� = md〈v〉/dt = 〈F〉.         (2) 

Here m is the mass of the considered particle (nucleus or 

electrons of the neutral atom), and F is the force acting on it. It 

is now assumed that the only forces acting on the various 

particles of the neutral atom are the Lorentz forces FL, no 

other external forces. This gives 

md�〈r〉/dt� = md〈v〉/dt = 〈F�〉 = q/c�〈v〉 × B�.   (3) 

This means that one has to calculate the expectation values 

of the velocities of the particles. Let us first consider a situa-

tion in which the centre of gravity of the system is at rest. In 

the electronic density functional theory the behavior of single 

electrons in single-electron states are discussed, which feel an 

effective Kohn-Sham potential [10]. The expectation value of 

the velocity then is defined as 

〈v〉=-�Ψ* ℏi∇���Ψd
3
r,               (4) 

where -iℏ∇��� is the quantum mechanical velocity operator. 

In the literature these expectation values are sometimes 

calculated explicitly, by using the symmetry properties of the 

system. For instance, in a spherically symmetric situation like 

in an atom without external field it can be shown that 〈v〉 is 

zero. The question is how to proceed in situations which are 

not spherically symmetric. For, instance, an external magnetic 

field breaks the spherical symmetry of an atom [11], or in a 

molecule there is no spherical symmetry [12]. However, from 

a physical point of view it is clear that 〈v〉 is zero for a sta-

tionary bound state of an electron in a situation in which the 

centre of gravity of the whole system is at rest. 

For 〈v〉  not equal to zero the electron would leave the 

system, i.e., it would not be in a stationary bound state. Alto-

gether this means that in the situation where the centre of mass 

of the system does not move, there is not resulting expectation 

value of the Lorentz force, because all expectation values of 

the velocities of the involved particles (electrons and nucleus) 

are zero. 

Let us now consider the situation in which the centre of 

gravity moves straightly with constant velocity v�, or - more 

accurately written, see above - with constant velocity 〈v�〉. 
Then the expectation values of all involved particles are 

〈v〉 = v�. Nevertheless, the expectation value of the sum of all 

Lorentz forces acting on the various particles is still zero. The 

reason is that the nucleus has a charge q, and the sum of the 

charges of all the electrons of the neutral atom is -q, so that 

〈F�〉 is indeed zero although the centre of gravity is moving. 

The particles of the atom feel also the Coulomb interactions 

f�� = −f�� between them. They occur also in the sum of forces 

acting on the centre of gravity. However, to calculate their 

total contribution to the force acting on the centre one has to 

sum over all i and j, and this gives zero. 

Altogether this means that the centre of gravity of a moving 

neutral atom does not feel an effective Lorentz force in an 

external magnetic field, although the mass of the nucleus is 

different from the mass of the electrons and although the 

expectation values of the positions of the various particles are 

at different positions (see Introduction). 

3. Conclusion 

It has been shown that neutral atoms moving in an external 

magnetic field do not experience a resulting Lorentz force 

acting on their centre of gravity. Therefore the movement of a 

neutral atom with constant velocity relative to an external 

magnetic field at rest is not affected by the magnetic field. The 

story is different from the one of moving neutral atoms in an 

internal magnetic field which is produced by the valence 

electrons of the atoms. As shown in the Introduction, thereby 

the Lorentz forces on the valence electrons which build the 

atomic magnetic moments should not be taken into account 

when calculating the sum of Lorentz forces acting on the 

centre of gravity of the system, because otherwise one would 

run in a double counting problem. Because of this there re-

mains indeed a resulting expectation value of the Lorentz 

forces acting on the centre of gravity, which is described by 

the Lorentz force acting on a unit with charge q which consists 
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of the nuclear charge and of the charges of the electrons in the 

closed electronic shells.  
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