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Abstract: Exact solution for spherically symmetric isotropic charged fluid sphere are investigated relativistic model of an 
electrically charged compact star, and energy density associated with the electric fluids is on the same order of magnitude as 
the energy density of fluid matter itself. The analytic solution depicts a unique static charged configuration of quark matter 
with radius R~9 km and total mass M~2.5M⊙. And try to inspect the velocity of sound approximately 1/√3 which is similar to 
the attitude of SQM (Strange Quark matter). Adiabatic index conform the stability of star if the adiabatic index is less than 4/3. 
Based on an analytic model in the recent work, the applicable values of physical quantities have been calculated by accepting 
the estimated masses and radii of some well-known strange star candidates like PSR J1903+327, Her X-1, Cen X-3, EXO 
1785-248. 

Keywords: Exact Solution, Einstein – Maxwell, Reissner – Nordström, Relativistic Astrophysics, Compact Star,  
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1. Introduction 

It is well known that, at the pressure free interface, the 
Reissner-Nordstrӧm solution is interesting to observe (present 
charge) the gravitational collapse of a spherical symmetric 
distribution of the matter to a point singularity may be avoided 
[1] if the matter distribution acquires large amount of electric 
charge. Any compact star is not composed of charged perfect 
fluid and may be used to make a suitable model of compact 
object with charge matter for the numerical study of the stellar 
structure [2, 3, 4]. Pant, Metha and Tewari showed that radiative 
gravitational radiation (GR) collapse may be contributed to 
formation of the compact non-singular massive hot object [5-7]. 
The black hole is never formed due to the apparent horizon 
formation condition [8]. This could be understood as the 
formation of a naked singularity. But the main reason is that the 
star radiates all its mass before it reaches the singularity at r = 0 
and t = 0. Nuclear matter is meta-stable and it is well known that 
after releasing a lot of energy converts into strange quark matter 
(SQM) to achieve stability. 

The analytic solutions, behavior of matter, to the equation 
of relativistic stellar structure of gravitational field equations 
are two types, one is “normal” matter for neutron stars and 

another is “self-bound” strange quark star. Here we study the 
Self-bound star which is nonlinear electrically charged self-
bound stars, self-bound star’s radius R< 10-12 km [12]. A 
self-bound strange quark star belongs to a different class 
compact object than a conventional normal matter neutron 
star [12]. For ordinary strange matter, the electric field is ~ 
1018 V/cm to up to 1019 V/cm if SQS forms a color 
superconductor [9-10]. The electric fields are as high as 1019-

20 V/cm [13] and it’s determined the electrostatic effects and 
the surface tension of the interface between vacuum and 
quark matter [14]. And interesting things is that our model is 
exactly matching that range [13] of electric field. 

The presentation of this work is as follows. The next 
section, Sect. 2, is devoted for the solution of Einstein–
Maxwell field equations of perfect fluid and derives the 
pressure and density relation. In Sect. 3 we present the 
elementary criteria to be satisfied the obtained solution as to 
present a realistic stellar model. Section 4 developed the 
important ratios by matching the obtained metric components 
with the space-time exterior to the charged object which is 
described by the unique Reissner–Nordström metric. 
Physical analysis has been made on the obtained models in 
Sect. 5. In Sect. 6 we apply our “toy” models to some well 
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known potential strange star candidates to calculate various 
physical quantities by assuming the estimated masses and 
predicted radii. And finally Sects. 7 concludes the work. 

2. Fundamental Equations 

2.1. Field Equations 

The interior metric in Schwarzschild coordinates �� =(�, �, �, 	) [15] is given by the metric: 

��
 = ��(�)��
 − ��(�)��
 − �
(��
 + ���
�	�	
)   (1) 

The function �(�) and �(�)  are arbitrary and satisfy the 
Einstein-Maxwell field equations, 

��� = ��� − �

 ���� = �(��� + ���)               (2) 

where � = 8!  is Einstein’s constant. Consequently, ��� 	and ���  are energy-momentum tensor of fluid distribution and 
electromagnetic field, assumed in tangential pressure is zero. 

For the metric (1), the Einstein–Maxwell field equations 
with matter and charge expressed as [16]. 

�"
� �#� − �#$%&

�' = �( − )'
�*                          (3) 

+�""
 − �"�"
, + �"'

, + �"#�"

� - �#� = �( + )'

�*               (4) 

�"
� �#� + �#$%&

�' = �. + )'
�*                          (5) 

where prime (′) denotes the r-derivative. 
For electrically uncharged case, introducing a quantity 0(�) in the following expression 

	�#� = 1 − 
2(�)
� + )'

�'                            (6) 

To transform the system into relatively simpler form eqns. 
(3)-(5) with the help of following ansatz [18, 19], 

�� =	34(1 + 5�
)4                            (7) 

Where N is a positive integer and 34 , 5 > 0  are two 
constants to be determined by the appropriate physical 
boundary conditions. From (3) and (4) one obtain the 
equation of “pressureisotropy”, 
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Equation (8) is a second order differential equation in υ 
and first order in λ. Now we introduce the following 
transformations: 

�#� = 9, � = 5�
                          (9) 

Equation (8) become the following equation by 
transforming equation (9) 

:;
:< + ((�)9 = =(�)                         (10) 

This equation is linear differential equation and the 
solution is 

9 = �#>?(<):<@> �#>?(<):< =(�)�� + A4B         (11) 

Where 
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and A4 is the integral constant, which may be determined by 
imposing appropriate physical boundary conditions. Now we 
can generalize the metric potential Z in general form is 

9 = <
(�8<)H%'I�8(�84)<J 'KLH

> (�8<)H%KI�8(�84)<JK%HKLH
<' M
N)'< − 1O �� + A4 <

(�8<)H%'I�8(�84)<J 'KLH
                       (12) 

2.2. Electric Charge Distribution and Pressure Anisotrop 

Various authors presented variety of solutions previously 
for different suitable choices of charge distributions. Some of 
the solutions will be found in [23]. In this work we consider 
the following model distributions: 

Model I: 

22/1
2
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xxxKx
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Model II: 
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                   (14) 

where K ≥ 0. 
These distributions are chosen, in term of x, in such a way that 

electric field intensity and anisotropy vanish at the center and 
remains continuous and bounded in the interior of the star for a 

wide range of values of the parameters. Thus these choices are 
physically reasonable and useful in the study of the gravitational 
behavior of charged stellar objects. It has been shown by 
Maurya and Gupta [19, 20] for the uncharged and charged cases 
respectively that the ansatz for the metric function 

N

N xBe )1( +=υ where N is a positive integer, produces an 

infinite family of analytic solutions of the self-bound type. Some 
of these were previously known (N = 1, 2, 3, 4, and 5). The most 
relevant case is for N = 2, for which the velocity of sound 
≈ 1 √3⁄  throughout most of the star, somewhat similar to the 
behavior of strange quark matter [21]. In this work we keep our 
interest particularly on to obtain the charged analogue of the 
types N = 3 which correspond to Heintzmann [22] model and 
derive corresponding equations of state. 

For the cases N = 3, the solution of the Einstein–Maxwell 
system (3) – (5), for the model charge distribution and 
pressure anisotropy considered in Eqs. (13) – (14), are then 
given by the following. 
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Model I: 
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3. Determination of Constants and 

Physical Quantities Using Boundary 

Conditions 

3.1. Conditions for Physical Acceptability 

For well behaved nature of the solutions for anisotropic 
fluid sphere should be satisfied in the following conditions 
[24]: 

i. The solution should be free from physical and geometric 
singularities i.e. it should yield finite and positive 
values of the central pressure, central density and 
nonzero positive value of �T(U) =  constant, and �#�(U) = 1. 

ii. The pressure ( and density . should be positive inside 
the fluid configuration. 

iii. The interior solution for strong energy condition should 
have positive, i.e. (2	()/. ≥ 0  and dominant energy 
condition . ≥ (. 

iv. The relativistic adiabatic index is given by Γ =

(( + .)(	�(/�.. the necessary condition for this exact 
solution to serve ass a model of a relativistic star is that Γ > 4/3. 

v. Electric field intensity E, such that �(0) = 0, is taken to 
be monotonically increasing i.e. (�� ��) > 0⁄  for 0 < � < �. 

vi. Pressure and density, should maximum at the centr and 
monotoniclly decreasing towards the pressure free 
interface i.e. (�(/��)�\U = 0,  (�./��)�\U = 0	 and (�
(/��
)�\U < 0, (�
./��
)�\U < 0 so that pressure 
gradient �(/�� ≤ 0  and density gradient �./�� ≤ 0 
for 0 < � < �. 

vii. The redshift z should be positive, finite and 
monotonically decreasing in nature with the increase of r. 

3.2. Determination of the Arbitrary Constant A 

To specify A the boundary condition 0)( == RrP can be 
utilized, 
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Model II: 
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Where 2CRX =  

3.3. Determination of the Constant B 

The constant B can be specified by the boundary condition )()( RR
ee

λυ −= , which yields, 
Model I: 
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3.4. Determination of the Total Charge to Radius Ratio 

Model I: 

2/1
22/12 )21)(1()41(

2 






 +++= XXXX
K

R

Q
                                                      (23) 

Model II: 

2/1
12/12 )1()41(

2 




 ++= −XXX
K

R

Q
                                                              (24) 

3.5. Determination of the Total Mass to Radius Ratio 

Model I: 
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4. Constructing Physical Realistic Fluid Spheres Pressure and Density Gradients 

To analyze the analytical equation of state, a straightforward differentiation of the pressure and density equations (15) – (20) 
with respect to the auxiliary variable		�. Due to the comparison of those types we obtain the pressure and density gradients 
become, 
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2/33

2

332/3

2345

)41()1(
114

3
)1(2
)3(9

)41(
)3755231358302101524560(

20 xx

xx
A

x

x

x

xxxxxK

dx

dP

C ++
−+−

+
−+

+
+++++=κ

 

2/53

2

332/5 )41()1(
52330

3
)1(
)5(

2
3

)41(
)(

20 xx

xx
A

x

x

x

xQK

dx

d

C

n

++
+++

+
+−

+
−=ρκ

 

Model II: 

2/33

2

332/32

23

)41()1(
114

3
)1(2
)3(9

)41()1(
)6345922(

2 xx

xx
A

x

x

xx

xxxK

dx

dP

C ++
−+−

+
−+

++
+++=κ

 

2/53

2

332/52

234

)41()1(
52330

3
)1(
)5(

2
3

)41()1(
)41010518264(

2 xx

xx
A

x

x

xx

xxxxK

dx

d

C ++
+++

+
+−

++
−+++−=ρκ

 

5. Physical Analysis of the Models 

In our study the parameters may be set in such a way that the solution satisfies the necessary conditions of physical 
acceptability. 
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Fig. 1. Adiabatic sound speed for (3.0, 0.11). 

 

Fig. 2. Behavior of energy density. 

 

Fig. 3. Behavior of radial pressure. 

For the particular set of values of (K, X) for which the fluid 
distribution satisfies the following inequalities P (r) > 0, 
dP/dr < 0, dρ/dr < 0 and dP/ dρ ≥ 0 and the speed of sound 
satisfies 0	 ] 	^�(/�. ] 1  and monotonically decreasing 
with increasing radius are reported in Table 1. A fluid sphere 
satisfying these inequalities will be termed as well-behaved. 
Though there is no explicit relation in between K and X, 
these inputs various charged fluid spheres can be generated. 
The mass and corresponding radius of compact charged fluid 
spheres, obtained by specifying one of the following: i) 
central density or, ii) surface density, is reported in Tables 1. 
For a particular choice of stellar surface density = 8.4×1014 g 

cm
-3, the total mass and other physical quantities are 

calculated and numerical results have been reported in the 
Table 1. 

Model I: 
Considering n = 1 the range of values K = 0.8, X = 0.225 

are obtained over which the fluid distribution satisfies the 
above inequalities. Numerical investigation shows that X 
decreases as K increases. The maximum values of 
compactness parameter is obtain (2M/R)max 0.49742, using 
Eq. (3.5a) at K= 3.0, Xmax = 0.11. Corresponding to the 
values of K and X, the total charge to radius ratio, and total 
charge to total mass ratio are Q/R = 0.18969 and Q/M = 
0.7671 using Eq. (3.4a). We find out the total mass and other 
physical quantities are calculated as M = 1.173 M⊙, R = 
7.423 Km, ρc =1.41×1015 gcm

-3 and Q =1.294×1020 C for 
choosing the stellar surface density ρs = 8.4×1014 gcm-3 as 
parameter. 

Model II: 
For arbitrary value of n = 1 max K=1.0 X= 0.355, 

corresponding to these values of K and X the compactness 
parameter, the speed of sound is 0.6823, total charge to 
radius ratio and total charge to total mass ratio are found to 
be (2M/R)max = 0.64639, Q/R = 0.2689 and Q/M = 0.8322. In 
order to choosing stellar surface density ρs = 9.2×1014 g cm

-3 
as parameter the mass and other physical values comes out to 
be M = 2.15M⊙, R = 9.264 Km, ρc = 2.66×1015 g cm

-3. The 
maximum mass of charge star depends on the set of lowest 
values of K and corresponding set of highest values of X. the 
values of K and X have been plugged in simultaneously as to 
satisfy dP/dx < 0, dρ/dx < 0 and the speed of sound satisfy 
0	 ] 	^�(/�. ] 1  and monotonically decreasing with 
increasing radius. It has been observed that the speed of 
sound always remain less than the speed of light and the 
condition of causality is satisfied. For large ρ (at center), Γ > 
4/3 and there is a minimum value of ρ = ρs the surface value 
below which Γ becomes infinitely large. 

6. Model for Some Well Known Strange 

Star Candidates 

From last few decades astrophysicist has been analysis not 
only theoretical but also observational relativistic stellar 
objects for estimating mass and radius of their known 
compact objects such as PSR J1614-2230, Vela X-1, 4U 1820-30, 
4U 1608-52 are not compatible with the standard neutron star 
models [25, 26]. More recent review is found in Weber [27]. 
Base on the analytic model development so far, to get an 
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estimate of the range of various physical parameters of some 
potential strange star candidates we have calculated the 
values of the relevant physical quantities, such as central 
pressure, and central/surface density, by using the refined 
mass and predicted radius of 5 pulsars recently reported in 
Gangopadhyay et al. [27]. The values are reported in Table 2. 

7. Conclusion 

In this work we have studied particular simple families of 
relativistic charged stellar models obtained by solving 
Einstein–Maxwell field equations for a static spherically 
symmetric distribution of perfect fluid distribution based on 
two ad hoc assumptions, one for metric potential and other 
for the form of electric charge distribution. These families of 
analytical relativistic stellar models may be considered as 
charged analogues of Generalized Heintzmann model. Our 
analytical analysis shows that, in the presence of charge, the 
solutions satisfy all the physical requirements to construct 

physically acceptable electrically charge stellar models. 
However, various authors usually have chosen 2×1014 gcm-3 
as stellar surface density to calculate the mass and radius of 
the charged fluid sphere which may have given rise to the 
stellar configuration as massive as 4-6 M⊙ with much lower 
central density. Such massive configuration may not serve as 
a realistic model for a strange quark star. 

For some suitable choices of set of input parameters (K, X), 
we have generated compact fluid spheres similar to the mass 
and radius of some possible strange star candidates like PSR 
J1614-2230, 4U 1608-52, Vela X-1, Cen X-3. 

An analytical stellar model with such physical features is 
most likely to present an approximated realistic model of 
strange quark star. And hence the analytical EOS given by 
our models, besides the usual linear EOS based on 
phenomenological MIT bag model, could play a significant 
role in the description of internal structure of electrically 
charged bare strange quark stars. 

Appendix A 

Table 1. Model I and II. 

Model I
 

 

max( , )K X  
2A  
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2

1  
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 
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 2 ( )

( )

M km
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( )

Q km

R km

 ( )

( )

Q km

M km

 
c

z  
s

z  

(0.3, 0.33) -1.9552 0.1552 0.25143 0.70401 0.65535 0.30197 0.92156 1.5382 0.6548 
(0.35, 0.31) -2.0488 0.1679 0.23678 0.69313 0.648777 0.29417 0.90683 1.4404 0.6276 

(0.46, 0.283) -2.2216 0.1865 0.21194 0.67374 0.642284 0.29091 0.90585 1.3153 0.5932 

(0.5, 0.273) -2.2769 0.1946 0.20450 0.66769 0.638021 0.28635 0.89762 1.2668 0.5783 
(0.8, 0.225) -2.6107 0.2402 0.16451 0.63226 0.616409 0.268125 0.869957 1.0404 0.5049 

(1.0, 0.204) -2.7842 0.2651 0.14657 0.61426 0.60418 0.258708 0.85639 0.9422 0.4701 
(3.0, 0.11) -3.8237 0.4420 0.0688 0.50516 0.49742 0.18969 0.76271 0.5041 0.2861 

(5.0, 0.074) -4.4458 0.5585 0.03963 0.43501 0.41471 0.148524 0.71628 0.3381 0.2022 
Model II  

(0.3, 0.335) -1.0268 0.0953 0.50810 0.83848 0.704826 0.22263 0.63172 2.239 0.7032 

(0.35, 0.53) -1.0783 0.0975 0.49885 0.8262 0.707491 0.23823 0.67344 2.202 0.70226 
(0.5, 0.44) -1.4026 0.1269 0.42063 0.76716 0.676806 0.2363 0.89828 1.8067 0.6243 

(0.8, 0.375) -1.795 0.1584 0.3575 0.70867 0.65295 0.2543 0.77902 1.5127 0.5584 
(1.0, 0.355) -1.9931 0.1712 0.3348 0.6823 0.64639 0.2689 0.8322 1.4167 0.5322 

(5.0, 0.14) -5.294 0.4149 0.1324 0.4324 0.43898 0.2317 1.0556 0.5525 0.2755 

(8.0, 0.075) -7.4074 0.5835 0.0742 0.3379 0.29893 0.1545 1.0336 0.3091 0.1745 

Appendix B 

Table 2. Physical values of energy density and pressure for different strange stars about N=3. 

Strange star candidate (k, X) `	(`⨀) R (km) bc,de fc,ge fh,gi 

PSR J1614-2230 
(0.06, 0.084) 1.38 10.5 0.69 1.618 5.415 
(1.5, 0.115) 1.978 11.15 1.19 1.012 6.50 

PSR J1903+327 
(0.9, 0.16) 1.367 10.495 0.691 0.705 5.525 
(1.2, 0.0815) 1.667 10.699 0.655 1.020 6.359 

4U 1608-52 
(1.17, 0.0816) 1.587 10.452 0.692 0.705 5.522 
(6, 0.0866) 1.741 10.751 0.715 0.936 6.501 

Vela X-1 
(1.17, 0.0817) 1.36 10.421 0.669 0.705 5.524 

(6, 0.089) 1.77 10.382 0.711 0.954 6.569 

Cen X-3 
(3.32, 0.0746) 1.284 10.197 0.621 0.719 5.676 

(10, 6, 0.071) 1.49 10.65 0.521 0.9367 6.080 

EXO 1785-248 
(4.5, 1.4, 0.108) 1.3 10.109 0.547 0.465 6.109 

(3.3, 1, 0.0662) 1.134 10.025 0.566 0.652 5.330 
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