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Abstract: This paper presents an advanced Physics of superfluidity and superconductivity. We know from Quantum 

Mechanics that there are two types of particles, bosons and fermions. Single states can be occupied by any number of bosons 

while for fermions a single state can be occupied at most by one fermion. The charged boson system is found to exhibit 

superfluidity: the gauge-invariant Lagrangian, coupling between the bosons and the electromagnetic gauge field. It is observed 

that current conservation puts constraints on current correlation. Current correlation functions and electromagnetic responses 

are then determined for superfluids and metals. The response function in a metallic conductor is used in obtaining its several 

parameters which include conductivity, dielectric constant, polarization, magnetic moment density and magnetic susceptibility. 

The London equation is then deduced for superconductors. 

Keywords: Gauge-Invariant Lagrangian, Current Correlation, Electromagnetic Responses, London Equation, Superfluid, 

Metal, Superconductor, Free Electron Theory, Meissner Effect 

 

1. Introduction 

Historically, superfluidity was discovered some time after 

superconductivity. The similarity of the two words is no 

coincidence. A superconductor is also a phase of a system in 

which a charge is transported without dissipation. In a metal 

or alloy, this charge is electric charge, and its electric 

resistance that becomes unmeasurably small. Also for the 

vortices, there is an analogue in a superconductor: flux tubes, 

quasi-one-dimensional objects in which a magnetic field can 

penetrate the superconductor. And, as for the superfluid, there 

is a critical temperature above which superconductivity is 

lost. 

A superconductor can be said to break a local symmetry 

spontaneously, while a superfluid breaks a global symmetry 

spontaneously. This statement shows the theoretical 

similarity of the two phenomena, but also emphasizes their 

only fundamental difference a superconducting metal is 

different from superfluid helium in many aspects. For 

instance, electrons are fermions, while helium atoms are 

bosons. A charged boson system is a superfluid in which 

exists coupling between the bosons and the electromagnetic 

gauge field as well as the existence of a conserved current. 

The gauge – invariant Lagrangian will be derived in Section 

2 to demonstrate the coupling between current or charge 

carriers and the electromagnetic gauge field in superfluids. 

An expression for the conserved current in a superfluid will 

also be derived in Section 2. In Section 3, expressions for the 

current correlation functions and electromagnetic responses 

in superfluids will be deduced. The free electron model and 

the response function in metals will be presented in Section 

4. In Section 5, the response function for the boson superfluid 

will be presented. The London equation will be deduced and 

other equations will be given for superconductors in Section 

6. Table 1 presents the various critical temperatures of some 

element and compound superconductors. Figure 1 shows the 

functional relationships between metals, superfluids and 

superconductors. 
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Figure 1. Relationships between superfluids, metals and superconductors. 

2. The Charged Boson Superfluid 

BOSONS are particles that obey the Bose-Einstein 

distribution which is given by 

��� �	 �
�∝�	
 ��⁄ 	�� �	 �

���	
�	�� ��⁄ 	���	             (1) 

	� 	 ��	
����.��                           (2) 

Where: EF = Fermi Energy; 

g(E) = density of states within energy interval dE; 

dnE = number of bosons having energy between E and E+ 

dE; 

∝	� characteristics ratio of the system of bosons = 0 (for 

bosons). 

Bosons are identical and indistinguishable, possess integer 

spins, and do not obey Pauli Exclusion Principle. Examples 

of boson systems are light photons, hydrogen H2 molecules, 

and liquid helium atoms. When a boson system is charged 

and cooled down to or below its critical temperature TC, it 

becomes a superfluid. The boson system superfluid can be 

analyzed using a theory with global U(I) symmetry which 

contains a conserved charge and can be coupled to a U(I) 

gauge field. The electromagnetic vector potential is a U(I) 

gauge field. 

A charged boson system couples to an electromagnetic 

gauge field. In the presence of a non-zero electromagnetic 

field, the Lagrangian for a charged boson system (of boson 

mass m) needs to be modified. It is known that the boson 

system Lagrangian 

��Ψ� � � ���� �Ψ∗ !Ψ" 	Ψ !Ψ∗� " �
�#  $Ψ∗ $Ψ% 	&|Ψ|� "

	()� |Ψ|∗                (3) 

Is invariant (does not vary) under a global U(I) 

transformation 

Ψ	 → 	+,-Ψ 

i.e., that ��+,-Ψ� = L�Ψ�. However, it is not invariant (does 

vary) under a local U(I) transformation 

Ψ�x, t� → +,-�$,!�Ψ�x, t�. 
We have: 

��+,-�$,!�Ψ� � i ���� ��Ψ∗�34 % �345�Ψ " 	Ψ�34 %
�345�Ψ∗� " �

�# |�3, % �3,5�Ψ|� % &|Ψ|� " ()
� |Ψ|6�        (4) 

Where the subscript O indicates the time direction and the 

subscript � � 1, 2, 3, … , ;  represents the spatial directions. 

Let us use the Greek letter &, <, +=>. to represent space- time 

directions. For example, ?@ represents the x-axis space-time 

coordinates. The coupling between the bosons and the 

electromagnetic gauge field can now be obtained by 

replacing 3@5	AB	C@ as follows  

LDΨ, C@E � 	i ���� �Ψ∗�34 % �CF�Ψ " Ψ�34 % �CF�Ψ∗� "
�
�# |�3, % �C,�Ψ|� % &|Ψ|� " ()

� |Ψ|6         (5) 

The following Lagrangian has an interesting property in 
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that it is gauge- invariant: 

Ψ	 → 	ΨG = +,-�$,!�. ΨC@ 	→ 	C@H =	C@ −	3@5     (6) 

LDΨ, C@E → �DΨG, C@HE = 	LDΨ, C@E                (7) 

In equation (6), we have: 

3@5 = C@ + I3<�<&	 = C@ + I3<D3@C< − 3<C@ 	E    (8) 

Where: C@ = gauge potential (or field) 

�<& =	Field strengths of C@ . 
Equation (5) only describes the coupling between the 

charge field Ψ and the gauge field	C@. Hence, the complete 

gauge-invariant Lagrangian that describes the dynamics of 

both Ψ	and	C@  in the superfluid consisting of interacting 

charged boson system and electromagnetic field is given by: 

LDΨ, C@E = 	i ���� �Ψ
∗�34 + �CF�Ψ − Ψ�34 + �CF�Ψ∗� −

�
�# |�3, − �C��Ψ|� + 	&|Ψ|� −	()� |Ψ|

6 +	 �
�MN�O� �

�
P �Q�

� −	>R�� (9) 

Where: c = speed of light; 

Q, =  Electric field of the U (I) gauge theory = 34C, −
3,CF	 =	�4,; 
	R, = magnetic field of the U (I) gauge theory =S,TU3TCU =

	�� DS�VW�TUE 
It is known that the considered scientific model with a 

global U (I) symmetry has a conserved charge. The gauged 

action is gauge-invariant: 

SDΨ, C@E = Y�+,-�$,!�Ψ,C@ −	3@��            (10) 

Let ΨP�?, =�  be a solution of the classical equation of 

motion. Then 

Y�+,-�$,!�ΨP , C@� = Y	DΨP , C@ 	E 	+ Z�5��         (11) 

Therefore: 

Y	DΨP , C@ 	E = 	Y	DΨP , 	C@ −	3@5	E + 	Z�5�� 

= Y	DΨP , 	C@E +	[ ;� ?;=3@5	\@DΨP , C@E + 	Z�5��    (12) 

Where \@ is the current which is equal to: 

\@DΨ, C@E = 	−	3	]^�DΨ, C@E 

It can be seen that if Ψ�?, =� satisfies the classical equation 

of motion, then 

[;� ?;=. 3@5	\@DΨP , C@E = 0	�5`a	bcB	5� and the current 

\@DΨP , C@E is conserved. That is, we have: 

	3@\@DΨP , C@E = 	3!d +	3!d + 3,\, = 0              (13) 

Where d = 	 \4 is the density and \, 	is the current. 

Equation (13) is also true for a zero C@ field, such that: 

3@\@�ΨP� = 0                              (14) 

This shows current conservation in a neutral boson system. 

For a charged boson system, the conserved current is given 

by: 

\4 = d = 	Ψ∗Ψ	 

	\, =	 �,�# eΨ∗�3,Ψ� − �3,Ψ∗�Ψf +	C,|Ψ|�	    (15) 

It is interesting to see that the current in a charged boson 

depends spatially on the gauge potential. Thus, a superfluid 

conducts electricity without any resistance, couples with the 

existing electromagnetic gauge field and possesses a 

conserved current. 

3. Current Correlation Functions and 

Electromagnetic Responses in 

Superfluids 

Current conservation puts constraints on current 

correlations. Many physical quantities, such as 

compressibility and conductivity, are determined by current 

correlations. To obtain the correct responses, it is important 

to take the limits, wave number vector K→ 	0 and the angular 

frequency g → 	0, in the appropriate order. Now let us find 

the response of the superfluid system to an external gauge 

potential. Let us find how much current \@  the gauge 

potential C@ can generate. 

Introducing \@ according to 

V4 = 	d;	V, =	 �,�# eΨ∗�3,Ψ� − �3,Ψ∗�Ψf,	      (16) 

it can be seen that the Lagrangian has the form: 

�DΨ, C@E = ��Ψ� −	C4\i −	C,\, −	 �
�# d�C,��	     (17) 

Using the linear response theory to find 〈V@�?, =�〉  to 

leading order in 	C@, we obtain the current \@ 	≡ 	−3]^�: 

〈\@�?, =�〉 = 	 〈V@�?, =�〉 + �1 − 3@4�C@ . d 

= [;�?;=n@<�?, =; ?o , =o�C< �?o , =o�    (18) 

For equation (18), the response functions are given by: 

nFF�?, =; ?p , =,� = 	−�q�= − =p� < ed�?, =�, d�?p , =,�f 
nF,�?, =; ?p , =,� = 	−�q�= − =p� < ed�?, =�, V,�?p , =,�f 
n,F�?, =; ?p , =,� = 	−�q�= − =p� < eV,�?, =�, d�?p , =,�f 
n,T�?, =; ?p, =,� = 	−�q�= − =p� < eV,�?, =�, VT�?p , =,�f +

	S,T3�? − ?p�3�= − =p� 〈s#〉                 (19a-d) 

Due to the C, dependence of the current, we have an extra 

contact term 3,T3�? − ?p�3�= − =p� 〈s〉# . 
If we introduce the correlation function, n@<�?, =; ?p , =p� =

	−�q�= − =p� < eV@?, =; V<�?p, =p�f >, then we have: 

n@< =	n@< +	3@<�1 −	3F@��1 −	3F<�3�? − ?p�3�= −
=p�〈d〉                     (20) 

The above result applies for both zero and finite 
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temperatures. It is noted that: 

�n@<�?, =; ?p , =p��∗ �	n@<�?p , =p; ?, =� 
or, in the w-k space, 

�n�Ut�@< �∗ �	n��Ut�@<
 

Where ui � 	v. 

Due to current conservation, the components of n@<  are 

not all independent. We have, in the w-k space, 

u@n�Ut�@< � 0                      (21) 

Thus, the full n@< can be determined from n,T as follows: 

n�Ut�4, � �n��Ut�,4 �w �	�xTN�yz�
{


|                    (22a) 

n�Ut�44 �	�UT} n�Ut�	4T � U
U{
}O n�Ut�,T

                    (22b) 

For a rotationally invariant system, we can further 

decompose Π,T 	bc;	n,T  into the longitudinal components, 

ΠUt��	bc;	nUt��, and the transverse components, ΠUt� 	bc;	nUt� , 

respectively as follows: 

Π�Ut�
,T �	 U
U{xO Π�Ut�oo %	�3,T "	U
U{xO � , Π�Ut��               (23a) 

n�UT�,T �	 U
U{xO π�Ut�oo %	�3,T "	U
U{xO � , π�Ut��               (23b) 

Equations (22a) and (22b) can now be written as: 

Π�Ut�4, � "u, 	Π�Ut�oo ;                       (24a) 

Π�Ut�FF �	 xO
}O Π�Ut�oo .                       (24b) 

Equation (20) can be written as: 

Π�Ut�oo �	n�Ut�oo %	 〈s〉# ;                    (25a) 

Π�Ut�� �	n�Ut�� %	 〈s〉# .                    (25b) 

4. The Free Electron Model and 

Applications of Response Function in 

Mettallic Conductors 

The postulates of the free electron theory of metallic 

conductors are: 

[i] A metallic conductor is composed of weakly bound 

valence electrons of the metal’s lattice atoms. 

[ii] The free electrons in the metal continuum are not 

bound to any particular atoms but move throughout the entire 

solid. 

[iii] Each electron in the metal experiences no net force. 

[iv] Each free electron in a metal moves throughout the 

metal under a constant electrostatic potential. 

[v] At the boundaries of the metal, the potential rises 

rapidly because of the net electrostatic force acting on an 

electron at the metal boundary. 

[vi] Thus, in this free electron model, the electrons in a 

metal can be accurately treated like a cloud or gas of non-

interacting spin " �
� fermions confined to a three-dimensional 

box. 

[vii] The free electrons in a metallic conductor obey the 

Pauli exclusion principle and the Fermi-Dirac energy 

distribution statistics which is given by; 

��� �	 �
��∝�	
 ��⁄ w�� �

�
��D	
�	�E/��w��             (26) 

Where: EF = "u�.∝ = Fermi Energy; 

K = Boltzmann constant; 

T = Absolute temperature. 

 

Figure 2. Plots of FFD Versus Energy E for T=OK and for T>OK for a metal. 

Figure 2 shows the graph of FFD against energy E which 

has a form shown by the solid curve for T = 0 K. For T > 0 

K, the graph takes on the form given by the dashed curve. 

For a metallic conductor, the number of states, dS, with 

energies between E and E + dE is: 

;Y � 	 N���;� � �N(��#�� O�
�� Q�

O;Q                 (27) 

Where h = Planck’s constant; 

m = mass of an electron; 

V = volume of the metallic conductor; 

E= energy. 

The density of states in the energy interval dE is: 

I�Q� � �N(��#�� O�
�� Q�

O	                       (28) 

The Fermi energy (at T = 0 K) for a metallic conductor is 

given by: 

Q�i �	 �OM# ���N(�
� ��

                          (29) 

Where � �� � number of electrons per unit volume. 

At this point let us demonstrate how the response function 

Π@< is related to many important physical quantities. Let us 

consider a metal in this case. In the g	 → 0 limit, we have: 

3s�W� � 	Π�4,U�44 C4�W�                     (30) 
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It is noteworthy to assert that C4�W�  is the external 

potential and "Π�4,U�
44  is the compressibility (at wave vector 

K). Hence, 

��W� = −Π�4,U�
44                      (31) 

Which is finite for all K. Thus, for g	 → 0, small g and 

g ≪ W limits, we have: 

Π�Ut�
oo = −��W�. g�

W��                       (32) 

From equations (25a) and (25b), it can be seen that in the 

g	 → 0 limit, n�Ut�oo  must exactly cancel 〈d〉 �⁄  in order for 

Π�Ut�
oo  to vanish ��W+	v�. 

In the W	 → 0 limit as well as in the |u| 	≪ g  limit, the 

quantity −�gC,, �g, W�  is an almost uniform electric field, 

which is expected to generate a current that has a direction 

given by C, and a wave vector represented by K: 

\,�g� = 	 limx→F
�
{

�,| �−�g�CT�g, W�             (33) 

From equations (23a) and (23b), we see that the limit 

W	 → 0  exists only when Π�Ut�
oo =	Π�Ut�

�  in the limit of 

g	 ≫	 |u|. Should this be the case, then we obtain, for the 

metallic conductor, the conductivity 

��g� = 	���,��
��

��,|� =	���,��
�

��,|�                    (34) 

The real part of the conductivity, 

�+��g� = 	−�� ���,)�
��

| =	−�� ���,��
�

|                 (35) 

Corresponds to energy dissipation. The imaginary part of 

the conductivity gives us the dielectric constant of the 

metallic conductor 

	S�g� = 	�o#��|�
| = 	�+ ���,)�

��

|O 	= �+ ���,)�
�

|O              (36) 

Thus, in the g	 ≫ 	 |W| limit, we have: 

Π�|,4�	
oo =	Π�|,4�

� = �g�+��g� +	g�S�g�             (37) 

If 	C, = 0,	then theρ polarization vector P satisfies 

3$ . � = 	−3ρ	 	⟹ �u,�, =	− ρ	 = −nFFC4 =
�UO
|O Π�Ut�

oo C4 =	 ,��yz�
��

|O u,Q,             (38) 

Therefore, we get: 

�, =	��yz�
��

|O Q, .                      (39) 

And it can be seen again that the dielectric constant, 

Q�g� = 	Π�Ut�
oo /g�.                    (40) 

We have so far considered the g	 ≫ 	 |W|	limit of Πoo  and 

Π� , as well as the g	 ≪ 	 |W|  limit of Πoo .  It remains the 

g	 ≪	 |W|  limit of Π�  that is to be considered. This limit 

corresponds to magnetic susceptibility. 

The magnetic moment density M satisfies 

3$ 	× ¢ =	−V 
Thus, if C4 = 0, we have: 

� ∈,TU uT¢U =	−V, =	−Π,TCT = −�3,Tu� −	u,uT�CT
��yz�
�

xO  

= +¤,T�U�u,� ∈U�,�T u,�CT
��yz�
�

xO  = −�¤,TUuTRx
��yz�
�

xO      (41) 

Therefore: 

¢, = − ��yz�
�

xO R, 	                           (42) 

And it can be seen that the proportionality constant of 

equation (420, − ��yz�
�

xO , is the magnetic susceptibility of 

metallic conductor. 

5. Response Function of a Superfluid 

In this section, let us find the expressions or formulas for 

the boson superfluid. Let us, in this regard, consider the 

boson system superfluid Lagrangian with the gauge field 

(Equation 5). We integrate out the amplitude fluctuations and 

obtain an XY-model with a gauge field. To a quadratic order 

in D3@ , q, C@E, we have: 

� = 	 ¥� 	��34q +	C4��	� − ¦��3,q +	C,��)           (43) 

It can be seen that: 

VF =	−�34q, 
V, = �¦�3,q. 

Therefore: 

n44 =	���−�g���g�〈q�|,U�q��|,�U�〉 = ¥|O

�|O�§OUOw,i¨©���|��                                (44a) 

n4, = n,4 =	���−�g��−�u,�〈q�|,U�q��|,�U�〉 = ¥§O|x

�|O�§OUOw,i¨©���|��                               (44b) 

n,T =	����u,��−uT�〈q�|,U�q��|,�U�〉 =
¥§ªx
x{

�|O�§OUOw,i¨©���|��                             (44c) 

The use of �Zw«Ic�g� gives us the response function in 

each equation (equations (44a-c)). The total response 

function, Π@<, in a superfluid has the following components: 
Π44 = 	� � |O

�|O�§OUOw,i¨©���|�	�	 − 1�         (45a) 
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Π4, �	Π,4 �	 �¥§O|x

e|O�§OUOw,i¨©���|�f             (45b) 

Π,T � 	�¦� ¬3,T %	 §Ox
x{
�|O�§OUOw,i¨©���|�	�	­           (45c) 

And Πoo � 	�¦� ® §OxO
�|O�§OUOw,i¨©���|�	� % 1¯            (45d) 

Π� � 	�¦�                         (45e) 

6. The London Equation and 

Superconductivity 

The compressibility, "Π�4,U�44 , is finite and is equal to �. 

The magnetic susceptibility of a metal conductor "Π�/>u� 

diverges as K→ 0.	 The real part of the conductivity, 

�+��g� � 	�� ���,)���

| � 	�� $§O
�|w,i¨� �

Ns°�|�
#            (46) 

Is zero for finite frequency. If we choose the coulomb 

gauge 3$C � 0 , then, from 	\, �	Π,TCT , we find a 

relationship between the current and the gauge potential: 

\ � 	Π�CT �	 �d �⁄ �C                        (47) 

Equation (47) is the famous London equation for 

superconductors. It is responsible for many novel properties 

of superconductors such as persistent current, the Meissner 

effect, etc. 

 

Figure 3. Externally applied magnetic field lines to: (A) superconductor; (B)conductor. 

For a Superconductor, we have:  

± � 	±²e³ "	�´ ´²⁄ �µf³µ; ´ � 	´²e³ "	�± ±²⁄ �µf³µ; 

Where: T = Surrounding/Ambient Temperature; 

B = externally applied magnetic field; 

TC = Critical or transition temperature; (a characteristic 

temperature) 

BC = critical magnetic field applied (when B=0 inside); 

Figure 3 shows an illustration of Meissner effect in 

superconductors. The Meissner effect cannot be observed in 

metallic conductors such as copper. At a certain constant 

absolute temperature T, an external magnetic field B is being 

applied to the superconductor. As the value of B increases, 

the field lines tend toward the boundary or periphery of 

superconductor. As B is increased to a critical value (BC), the 

field lines are ejected from inside (the cross section of) the 

superconductor. Thus, BC is that value of an externally 

applied magnetic field above which there are no any field 

lines passing through the superconductor. This is known as 

Meissner effect. For a superconductor, we have: 

R � 	RP�1 "	�� �P�⁄ ��
�
O                         (48) 

It is observed also that: 

� �	�P�1 "	�R RP�⁄ ��
�
O                      (49) 

Where: T = surrounding or ambient temperature (K); 

TC = critical or transition temperature (K); 

B = externally applied magnetic field (Wb/m
2
); Bc = 

critical value of B. 

A metallic conductor obeys Ohm’s law: 

� � �. �                             (50) 

This equation is valid as long as R is finite. 

If R is infinitely large, we get an insulator. If R tends to 

zero, so that the current is infinitely large, we obtain a 

superconductor. There are some elements or compounds 

which exhibit superconductivity as long as the ambient 

temperature (T) of the chosen material is maintained at the 

critical or transition temperature (TC) of that material. 

7. Conclusion 

In this paper, we have derived gauge-invariant Lagrangian 

for a superfluid which demonstrates the coupling between the 

charged superfluid particles and the electromagnetic gauge 
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field. It also shows that there is a conserved current in the 

superfluid field. 

Current correlation functions and electromagnetic response 

functions are found for a superfluid. Current conservation 

puts constraint on current correlations. Some important 

physical quantities for a metallic conductor, such as 

compressibility, dissipation, conductivity, polarization, 

dielectric constant and magnetic susceptibility, are obtained 

for the conductor. A conductor becomes a superconductor 

when it is subjected to the transition or critical values of an 

externally applied magnetic field or absolute temperature. 

The London equation is derived and the Meissner’s effect is 

discussed for a superconductor. 

Appendix 

Table 1. Characteristics or Critical Temperature of Some Superconductors. 

ELEMENT 

SUPERCONDUCTOR 

COMPOUND 

SUPERCONDUCTOR 

ELEMENT TC(OK) COMPOUND TC(OK) 

Tungsten 0.01 ZrAl2 0.30 

Cadmium 0.56 AuBe 2.64 

Mercury 4.15 NiBi 4.25 

Niobium 9.46 Nb3Al0.8Si0.2 18.05 

Technetium 7.92-8.22 Nb3Al0.8Ge0.2 20.05 

NOTE: Silver, Gallium, Iridium, Lead etc. are also 

superconductors having different critical or transition 

temperatures. 
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