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Abstract: Crystallization of a hard-sphere system of fermions with densities ranging from low to high values has been 

studied. Saturation densities at which the total energy E, is maximum has been calculated. The values of saturation particle 

number densities ps for low and high densities are; 7.11x10
21

 particles/cm3
 and 1.502x10

23
 particles/cm3

 respectively at which 

the fermions close pack or crystallize. Variation of ps with hard-sphere diameter C is not linear and it is more or less the same 

for both low and high density since crystallization occurs in both the cases. The total energy, E, has been found to vary non-

linearly with p at high densities and closely linear for low density. The value of E for low density is 1.435x10
-22

 J, and for high 

density it is 3.113x10
-21

 J. These findings are consistent with experimental and computer-simulated results obtained by others. 
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1. Introduction 

In general, for physical systems, whether molecular or 

nuclear, the interaction potential is composed of repulsive 

part and attractive part. The most illustrative such potential 

for molecular systems is the Lennard-Jones potential. 

Calculations have been done using potential composed of a 

finite repulsive part followed by an attractive part, and also 

using infinite repulsive part followed by a finite attractive 

part. Physical systems by themselves do not freeze or 

crystallize. Reduction of temperature followed by the 

application of large external pressure can lead to freezing and 

or crystallization. By implication, this means that when the 

two particles come closer, they tend to repel each other 

within some inter-particle distance, and unless this repulsion 

is overcome, they cannot constitute a motionless crystalline 

structure. It is this way of looking at the problem that 

motivated us to consider that the interaction between two 

particles coming very close to each other could be a hard 

sphere one. The system of particles that has been chosen is a 

Fermi system.  

Fermions are particles with half-integral spin. To decide 

whether an atom is a fermion, we count the total number of 

protons, neutrons and electrons constituting the atom, and if 

the number is odd, the atom will be a fermion since each 

constituent of the atom has spin 
1
/2, and each is a fermion by 

itself. Two indistinguishable fermions can never occupy the 

same quantum state due to Pauli’s exclusion principle. But 

when two fermions collide, the S-wave cross-section diverges 

at zero energy, and the p-wave cross-section goes to zero. 

The scattering amplitude at zero energy equals minus the 

scattering length. 

The S-wave scattering is repulsive at low energies, while 

the p-wave scattering is attractive. For S-wave contact 

interaction when the interaction will be infinitely repulsive, 

hard-sphere or hard-core type interaction, the S-wave 

scattering length as will be equal to the hard-sphere diameter 

‘C’. In fact, in an assembly of fermions in which pairs of 

particles interact via a hard-sphere repulsive core as=C which 

is also called the range of interaction. In what follows, we 

study the properties of a hard-sphere assembly of fermions. It 

was found [1] that in the classical hard-sphere system a 

freezing transition from a fluid to crystalline phase can take 

place as the density of the system is increased. Thus it is 

quite possible that the same phenomena can occur in 

quantum systems, whether bosons are fermions; and on 

crystallization or close packing, distinction between bosons 

and fermions disappears. 

The properties of hard-sphere assembly of crystalline 

bosons have been studied earlier [2]. To obtain the properties 
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of an assembly of hard-sphere fermions, it is well known that 

fermions have half integral spin and obey Fermi-Dirac 

statistics. For a non-interacting gas of such particles, in 

thermal equilibrium at a temperature T<<TF = EF/k, where EF 

is the Fermi energy, TF is the corresponding Fermi 

temperature and these values are determined by the mass and 

density of the gas; then all states lying below EF in energy are 

occupied by a single particle, and those above EF are empty. 

The re-arrangement of the particles can take place only in an 

energy shell of width ( )kT≈  around EF, and the thermal, 

transport and response properties are thus determined by the 

properties of states in this shell. Landau [3] had shown that 

under appropriate conditions, this picture remains 

qualitatively valid even in the presence of strong inter-

particle interactions. The systems are then known as a 

degenerate Fermi gas or liquid. The experiments showed that 

the Fermi systems behave as degenerate up to T ≅ 100 mK or 

below. The strong interaction that has been chosen in this 

study is that of hard-sphere interaction. 

In general, in dilute gases of fermions, the pair interactions 

have a range much smaller than inter-particle spacing [3]. 

But, when the two-particle scattering length is large (weak 

interactions), these short range interactions can modify the 

gas properties sufficiently. Such examples are low density 

neutron matter that may occur in the inner crust of neutron 

stars [4]. 

Here in this manuscript, the properties of a crystalline 

Fermi system will be studied. In such a system, the fermions 

will be very close to each other, and the interaction between a 

pair of fermions will be assumed to be a hard sphere one.  

The hard-sphere system is a useful first approximation to a 

many-body system via a pair potential containing a short-

ranged repulsive part. This description is better at very low 

densities where the particles experience weakly attractive 

potential tail surrounding the repulsion or at very high 

densities where the repulsion is predominant. However, at 

intermediate densities, the attractive potential may play a 

significant role.  

Therefore, a hard-sphere system of fermions with densities 

ranging from very low to very high values will be considered 

to obtain an expression for the energy per particle E/N. 

Fermions need to satisfy Pauli’s exclusion principle which 

leads to repulsion between two fermions when they try to 

approach each other to occupy the same energy state. A gas 

or liquid composed of 
3He and or neutrons is a well known 

assembly of fermions. For a N-identical fermion system, the 

total energy E in terms of various parameters has been 

calculated [5, 6]. It was found that in hard-sphere system, 

freezing transition from a fluid to a crystalline phase occurs 

as the density is increased. It is, therefore possible that the 

same phenomena may occur in quantum systems, whether of 

bosons or fermions [7]. The interaction potential U(r) 

between a pair of fermions is assumed to be the hard-sphere 

potential of diameter C, defined as  

( )
0

for r C
U r

for r C

+∞ ≤
=  >

                              (1) 

A generalized London equation was [7] proposed for a N-

fermion hard-sphere system with ν  intrinsic degrees of 

freedom for each fermion. For systems like 3He and neutron 

matter 2ν =  but for nuclear matter composed of neutrons 

and protons, 4ν = . In fact ν  is essentially the maximum 

occupation number in a given single-particle quantum state, 

and for bosons it is infinite. 

Thus the crystallization of hard-sphere system of fermions 

with densities from low to high values has been studied. 

Saturation densities leading to crystallization of hard-sphere 

fermions, and the energy per particle E/N, have been 

calculated. 

2. Theoretical Calculations 

A gas or a liquid composed of fermions in which pairs of 

particles interact via hard-sphere interaction has been studied 

to obtain the total energy E of the system and to obtain the 

saturation density sρ , leading to crystallization of the 

system. The well known fermion systems are 3He, neutron 

matter and symmetric nuclear matter. The degrees of freedom 
ν  for 3He is v=2, for neutron matter v=2, but for symmetric 

nuclear matter composed of equal number of neutrons and 

protons v=4. It will be assumed that each particle of 

diameter, C, is confined to move in a space with the 

characteristic dimension R, such that the mean particle 

spacing is R-C. Using Heisenberg’s uncertainty principle, it is 

easy to show that the energy per particle E/N can be written 

as  

2

22 ( )

E h

N m R C
=

−
                                 (2) 

Where m = mass of each particle and if the ultimate 

particle number density in the space with characteristic 

dimension R=2.84x10-8cm [8], then the total number of 

particles N, in the system whose volume is V, can be written 

as  

34

3
N Rπ ρ=                                      (3) 

34

3
oN Cπ ρ=                                     (4) 

Where oρ  = the particle number density at crystallization. 

Substituting for R and C from equations (3) and (4) in 

equation (2), we get E/N in a general form,  

1 1
3 3

2
2

( )
2

o

E
A

N m
ρ ρ− − −= −ℏ

                         (5) 

Here 
1

3

2

7.834
2

A
π= ≅  is a constant called the residue of 

the pole at close packing. Theoretically A is predicted [7] to 

lie within 1.63 27.0A≤ ≤  for random close packing (rcp) 

polyhedron cell and for regular close Packing (face centered 
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cubic) or hexagonal 2A π= . However, experimentally the 

value of A obtained from the high pressure data of 3He, 4He, 

H and 2H is 15.7 0.6A ≅ ±  for the crystalline branch of the 

equation of state. 

The general expression for uniform fermion hard-sphere 

systems with a degeneracy factor of v for the ground state 

energy per particle with a hard-core potential of range C [9] 

is close pack at the same densities. The value of 2v = for a 

fermion gas and the reduced mass of 3He is 246.64 10x − gm. 

( ) ( )( ) ( )
2 2

2 3

2

23 4
1 11 2 2 0

2 5 3 35

F F
F F

k k CE
v og k C k C

N m π π
  = + − + − +  

  

ℏ
ℓ                                           (6) 

by considering 0

E
E

N
→ , and introducing the thermal 

activation factor 
0exp

B

E

k T
τ

 
= − 

 
into Eqn (6), we can write, 

( ) 0

0 exp
B

E
E T E

k T

 
= − 

 
                               (7) 

where Bk is the Boltzmann constant. 

This gives the transition temperature for a hard-sphere 

assembly of fermions, i.e, 

( )2

2
0

cT T

E T

T
=

 ∂
=  ∂ 

                                    (8) 

and this leads to 

0 19.26
2

c

B

E
T K

k
= =                                    (9) 

The transition temperature at which phase transition takes 

place in a system of hard-sphere gas of fermions (3He) is 

20.3cT K= [10]. Thus the value of cT obtained in this 

manuscript for crystallization of fermions and given in Eqn 

(9) is close to the cT value obtained earlier [10]. However, 

this value is lower, and cT can vary if the density ρ varies; 

and if the hard-sphere diameter C varies. 

An improved hard-sphere ground state equation of state for 

N-fermions hard-spheres [11] is given by, 

( )

( )

2 2

3
2

1 1 1 1

3 3 3 3
0 0

1 2 1ℏvE C

N v m
b v

ν
πλ ρ

ρ ρ ρ ρ
− − − −

 
 

−  
= +  

    − +    
    

    (10) 

where  
2

2 2 33 6

10m vν
πλ  

=  
 

ℏ
, ( ) ( ) ( )1

1 1
v

b v
v

γ
−

= + −  

and 
3

22
1γ

π

 
 = − 
 
 

 

Eqn (10) is the generalized modified London equation. In 

the limit v → ∞ , ( )b v γ→ and 0,νλ →  then Eqn (10) show  

At both low and high densities, Eqn (10) reduces to the 

limiting expressions. 

Low density condition: 

At low density 0oρ → , Eqn (9) becomes  

2
3

2
( 1) 2E

C
N m

ν
ν πλ ρ ρ

ν
−= + ℏ

                 (11) 

Where 

2
2 2 33 6

10m
ν

πλ
ν

 
=  

 

ℏ
 

High density condition: 

At high density, oρ ρ→ and ν → ∞ in Eqn (9) such that  

( )1 1
3 3

1
3

2 22 1

(1 )
o

o

E C

N m

π ρ ρ
ρ ς

− −

−

−
= −

 +
 

ℏ

              (12) 

Now using [10] 
3

2
o

C
ρ ≡ and

2

32 1ς π
 
 = −
 
 

, Eqn (12) 

gives  

( )1 1
3 3

2 2
2 3

2

1
2

2
o

E

N m
π

ρ ρ
− −

=
−

ℏ

                         (13) 

Where π2 22/3 =A=15.7and m is the reduced mass for 3He. 

The saturation density for an assembly of fermions will be 

defined as that density ρs, at which the hard-sphere assembly 

of fermions form close-pack (cp) crystalline structure. At this 

density, the total energy, E, of the assembly will be such that,  

0

s

E

ρ ρρ =

 ∂ = ∂ 
                               (14) 

Now using low density value of E/N from Eqn (11) in Eqn 

(14), we can get sρ as a function of C as,  

3

2

4

9
s

m

C
νλρ

π
 =  
 ℏ

                              (15) 

In the high density system, the saturation density is 

obtained by using Eqn (13) in Eqn (14), and this calculation 

yields  



18 Samuel Limo Chelimo et al.:  Crystallization of Hard-Sphere Assembly of Fermions  

 

3

2
s o C

ρ ρ= ≡                                     (16) 

3. Results and Discussions 

Starting from the expression for the ground state energy 

per particle, 
E

N
of a hard-sphere assembly of fermions, (i) we 

have studied the variation of 
E

N
 with density, both for low 

and high density assemblies, (ii) have studied the variation of 

saturation density with hard-sphere diameter C both for low 

density and high density, (iii) have calculated the transition 

temperature cT  at which crystallization of fermions can take 

place. 

For a low density assembly (Fig. 1), the value of 
E

N
 

varies linearly with density. This may be due to the fact that 

at low density the interaction plays less roles in 

crystallization of fermions and the energy simply increases 

with particle number. 

 

Figure 1. Energy per Particle for low Density. 

 

Figure 2. Energy per Particle for high Density. 

For high density assembly of fermions (Fig. 2), there is no 

much variation in 
E

N
 up to a particular density, and then at 

some value of density, the value of 
E

N
 suddenly rises. This 

could be due to the fact that when the density becomes large, 

close to ρs, interactions become predominant due to the 

proximity of the particles at high density, and hence the 

energy 
E

N
 suddenly becomes large. 

The variation of saturation density with hard-sphere 

diameter is shown in Fig. 3. In the case of low density, the 

value of sρ  varies relative linearly with C, which means at 

low density the variation of sρ  with C is insignificant since 

the inter-particle distance may be larger than C. But for high 

density assembly, the value of sρ  increases sharply as C 

decreases, and this is an essential condition for 

crystallization. 

 

Figure 3. Variation of Saturation Density with corresponding Hard-sphere 
diameter for 3He particles. 

Table 1. Energy per particle and Saturation density for low and high 
densities(Free-particle spacing, R =2.8401 Å). 

 Low Density High Density 

E
Joules

N
 1.435x10-22 3.113x10-21 

( )3

s mρ −
 7.117x1027 1.502x1029 

The transition temperature cT  will vary with ρ and C. For 

our values of ρ and C, 19.26cT = K, but this could vary from 

assembly to assembly. Our results show that for both low and 

high density; ρs varies as C-3 which means that the assembly 

will crystallize for some value of C irrespective of the value 

of ρs. Such results were obtained for bosons by Khanna et al. 

[2]. 

In conclusion, our saturation density, 
E

N
values for low 

and high density compare well with laboratory, computer-
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simulation and the variational results [11, 12] and those of 

Zhizhong et al. [13]. 
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