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Abstract: Using the Darmois-Israel formalism the dynamical analysis of Reissner Nordstrom (RN) thin shell wormholes, at 

the wormhole throat, are determined by considering linearized radial perturbations around static solutions. Linearized stability of 

thin-shell wormholes with barotropic equation of state (EoS) and with two different EoS is derived. In the first case of variable 

EoS, with regular coefficients, a sequence of semi-infinite stability regions is found such that every throat in equilibrium 

becomes stable for a particular subsequence. In the second case, a singular EoS (in such variable EoS the coefficients is explicitly 

dependent on throat radius), the second derivative of the effective potential is positive definite, so linearized stability is 

guaranteed for every equilibrium radius. 
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1. Introduction 

The study of the dynamics of a shell separating two 

backgrounds in the context of general relativity has been 

developed in a powerful and direct formalism since the 

pioneer work of Israel [1] and applied to the charged shell by 

Kuchar [2]. It has been applied to cosmology, mainly to 

inflation, Berezin et al [3], and to modeling the dynamics of 

the border between two regions in different states, like bubbles 

or between two given spaces, Sato [4]. The linearized stability 

analysis of spherical shells was carried out by several authors. 

For instance, Kim [5] analyzed Schwarzschild-de Sitter 

wormholes, using the cut-and-paste construction. The 

formalism was applied to bubbles, shells around stars and 

black holes, and in the construction of thin-shell wormholes 

(with spherical, plane and also cylindrical throats; see for 

example, Lobo and Crawford [6], Visser [7], Eiroa and 

Simeone [8]). 

The barotropic EoS is a rather strong assumption usually 

made in studies of thin-shell dynamics. Garcia et al. [9] have 

argued for local thin shell wormhole solutions with variable 

EoS, in which surface pressure explicitly depends on both 

surface energy density and throat radius. More recently, a 

cosmological model based on a pair of linear, variable EoS has 

been proposed by Ponce de Leon [10]. On the other hand, 

Rahaman et al. [11] and Kuhfittig [12] have constructed 

Morris-Thorne type wormholes supported by fluids satisfying 

variable EoS, in which volumetric pressure depends explicitly 

on volumetric energy density and spacetime coordinates [13]. 

At this point, it seems natural to address the linearized stability 

of thin shell wormholes with variable EoS. The existence of 

local solutions pointed out in [9] is essential for the 

construction of the new models. 

In this work I start from Kuhffittig's treatment of energy 

conservation, linear EoS, and thin shell potentials to discuss 

the effects of variable EoS on the stability of RN wormholes. 

This paper is organized as follows. In Section 2 the Darmois 

–Israel formalism is briefly reviewed. Match an interior RN 

spacetime to an exterior RN spacetime, the dynamical 

equations of thin shell wormholes are given in Section 3. The 

linearized stability analysis of wormholes is given in Section 

4.The Barotropic EoS is given in Section 5. The variable EoS 

is given in Section 6.The singular EoS is given in Section 7.A 

general conclusion is given in Section 8. Also adopt the units 

such that 1c G= = . 

2. The Darmois – Israel Formalism 

Consider two distinct spacetime manifolds M + and M −
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with metrics given by ( )g xµ
µν
+

+  and 
8

ij

ijS K T n n
µ ν

µν π

+

−

Λ = − − 
 

, 

in terms of independently defined coordinate systems xµ
± . 

The manifolds are bounded by hypersurfaces +Σ and −Σ , 

respectively, with induced metrics ijg±
. The hypersurfaces are 

isometric, i.e. ( ) ( ) ( )ij ij ijg g gξ ξ ξ+ −= = , in terms of the 

intrinsic coordinates, invariant under the isometry. A single 

manifold M  is obtained by gluing together M +  and M −  at 

their boundaries, i.e. M M M+ −= U , with the natural 

identification of the boundaries + −Σ = Σ = Σ . The second 

fundamental forms (extrinsic curvature) associated with the 

two sides of the shell are: 

2

( )
ij i j i j

x x x
K n

γ α β
γ

γ αβξ ξ ξ ξ
± ±

Σ
∂ ∂ ∂= − + Γ

∂ ∂ ∂ ∂
M                (1) 

where nγ
±

 are the unit normal 4-vector to Σ  in M , with 

1n nµ
µ =  and 0

i
n eµ

µ = .The Israel formalism requires that 

the normal point from M − to M + .For the case of a thin shell 

ijK  is not continuous across Σ , so that, the discontinuity in 

the second fundamental form is defined as ij ij ijK K K
+ −  = −  . 

The Einstein equation determines the relations between the 

extrinsic curvature and the three dimensional intrinsic energy 

momentum tensor are given by The Lanczos equations, 

[ ]( )1

8
ij ij ijS K K g

π
−

 = −                (2) 

where [ ]K  is the trace of ijK    and ijS  is the surface 

stress-energy tensor on Σ .The first contracted Gauss- 

Kodazzi equation or the “Hamiltonian” constraint 

2 31
( )

2

ij

ijG n n K K K R
µ ν

µν = − − ,           (3) 

with the Einstein equations provide the evolution identity 

8

ij

ijS K T n nµ ν
µν π

+

−

Λ = − −  
.             (4) 

The convention [ ]X X X+ −= − , and 
1

( )
2

X X X
+ −= + , is 

used. The second contracted Gauss- Kodazzi equation or the 

“ADM” constraint, 

; ,

j

i i j iG e n K Kµ ν
µν = −                  (5) 

With the Lanczos equations gives the conservation identity 

;

i

j i iS T e nµ ν
µν

+

−
 =   .                (6) 

The surface stress-energy tensor may be written in terms of 

the surface energy density σ , and surface pressure p : 

( , , )i

jS diag p pσ= ⋅ − . For spherically symmetric thin shell, 

the Lanczos equations reduce to 

1

2
K

θ
θσ

π
−

 =                       (7) 

( )1

4
p K K

τ θ
τ θπ

   = +    .                (8) 

If the surface stress-energy terms are zero, the junction is 

denoted as a boundary surface. If surface stress terms are 

present, the junction is called a thin shell. 

3. Dynamics of RN Thin Shell Wormholes 

The matching of two Reissner Nordstrom space-times of

M ± , given by the following line elements:  

2 2 1 2 2 2 2 2( ) ( ) ( sin )ds F r dt F r dr r d dθ θ ϕ−
± ± ±= − + + +    (9) 

with 

2

2

2
1

m q
F

r r

± ±
± = − +  

Where m±  and q±  are the gravitational mass and the charge 

outside and inside the shell. The suffix ‘+’ denotes a quantity 

evaluated just outside the shell and ‘-‘just inside the shell. Let 

the equation of the shell be ( )r R τ± ±= , the history of the shell 

is described by the hypersurface ( , , )x xα α τ θ ϕ± ±= , in the 

regions M ±
, respectively; the function ( )R τ describes the 

time evolution of the shell. The non-trivial components of the 

extrinsic curvature are given by  

21
K K F R

R

θ ϕ
θ ϕ

± ±
±= = + &              (10) 

2

2 32

1
( )
m Q

K R
R RF R

τ
τ

± ±

±

= − +
+

&&
&

              (11) 

Note that R dR dτ=& , where the parameter τ measures 

proper time along the wormhole throat. From (7, 8) and 

(10,11), the Lanczos equations are given by  

21

2
F R

R
σ

π ±
−  = +

 
&                (12) 

2

2

1
1

4

m
R RR

Rp
R F Rπ

±

±

 − + + 
=  

+ 
  

& &&

&
               (13) 

Therefore, the energy conservation can be written in the 

form:  
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2
( )

R
p

R
σ σ−= +

&
&                  (14) 

In this equation, the first term corresponds to a change in 

the throat’s internal energy, while the second term 

corresponds to the work done by the throat’s internal forces. 

Rearranging equation (12) to get the equation of motion of 

thin shell wormhole,  

2 2 M
F R F R

R
− ++ − + =& &             (15) 

where M Aσ=  is the rest mass of the shell, ( 24A Rπ= ). 

This equation can be written in the form  

2 ( ) 0R V R+ =&                   (16) 

where 

2 2

2 2

21

24 4
( ) ( ) ( )M R

R M
V R F F F F−

− + − += + + − −       (17) 

is the effective potential. This dynamical equation completely 

determines the motion of the wormhole throat.  

4. Stability Analysis 

From (14), with ( )p p σ= , the conservation equation is  

1

2
( )

dR d

R p

σ
σ σ

= −
+∫ ∫              (18) 

This relationship may then be formally inverted to:

( )p p R= . Then, the dynamical equation (15) can be written 

in the form  

2 2(2 ) 0R F Rπ σ±+ − =&              (19) 

Where 

2( ) (2 )V R F Rπ σ±= −               (20) 

In the case of the static solution where, 0R R= =& && , and the 

characteristic constantsare σ
o
, R

o
, and p

o
,the equations (12, 

13) become:  

1

2
F

R
σ

π ±
−=

o o

o

                   (21) 

11

4

m R
p

R Fπ
±

±

−
= o

o

o o

                (22) 

By inserting the above equations (21, 22) into the 

dynamical equation, and expanding V(R) to the second order 

in ( R R−
o
) lead to:  

21

2
( ) ( ) ( )( ) ( ) (3)V R V R V R R R V R R O′ ′′= + − + − +

o o o o   (23) 

here prime denotes d dR . In the static solution, R R=
o , 

( ) 0V R =
o and ( ) 0V R′ =

o , then, 

21
2( ) ( )[ ]V R V R R R′′= −

o o               (24) 

The equilibrium configurations satisfying when 

( ) 0V R′′
o
f . Therefore, if the perturbation is sufficiently small, 

both the sign of ( )V R′′
o

and the approximately parabolic shape 

of the potential remain unchanged after perturbation. Under 

these conditions, the deformed potential gets two separate 

zeros within a sufficiently small neighborhood of R0. If these 

zeros are located at R = R1 and R = R2 (R1< R2), the perturbed 

potential is negative definite in the interval (R1;R2). Therefore, 

the assumption ( ) 0V R′′
o
f  entails oscillations between the 

slightly separated turning points R1 and R2 when the 

perturbation is sufficiently small. This situation describes 

linearized thin shell stability against radial perturbations. On 

the contrary, the case ( ) 0V R′′
o
p

 
implies instability. The 

truncated expansion (24) is essential to the linearized stability 

analysis considered here. The present approach is not 

conclusive when applied to throats in static equilibrium with 

vanishing ( )V R′′
o

. 

5. Barotropic Equation of State 

The linear barotropic equation of state (EoS), 

p ωσ=                    (25) 

Differentiating the conservation equation (18) led to: 

2( )
d

R p
dR

σ σ= − +                 (26) 

From equations (25, 26), the local solution will be  

2( 1)

( )
R

R
R

ω

σ σ
+

 =  
 

o

o                (27) 

which satisfies the condition ( )Rσ σ=
o o

. Combining this 

result with equation (20) will led to the corresponding 

effective potential: 

4( 1)

2 2 2( ) 4
R

V R F R
R

ω

π σ
+

±
 = −  
 

o

o          (28) 

Using (21) the condition ( ) 0V R =
o

, is automatically 

satisfied. However the first derivative of V (R) evaluated at R 

= R0 vanishes if and only if 

(1 )

2

m R

F
ω ±

±

− −
= o

o

                 (29) 

From (27), the local solution becomes constant when 
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1ω = −  and equation (29) occurs only at 3R m±=
o

, and 

0q = . From (21) the corresponding (local) energy density 

function, is 

2 2

23

3
( )

18R m

m q
R

m
σ σ

π±

±
=

±

− +
= =

o
o

           (30) 

By doing the second derivative of equation (26) I obtain, 

2( ) (1 2 ) ( )
R

R p pσ σ σ′′ = + ∂ ∂ +            (31) 

Now define a parameter γ by the relation  

2 ( ) pγ σ σ= ∂ ∂                     (32) 

Note that, γ is a useful parameter related to the equation of 

state. Differentiate equation (20) to get,  

2( ) 8 ( 2 )V R F R pπ σ σ±′ ′= + +               (33) 

and 

2 2 2( ) 8 {( 2 ) 2 ( )(1 2 )}V R F p pπ σ σ σ γ±′′ ′′= − + + + +  (34) 

Evaluating this equation at the static solution, 

1 2

2

2

2
( ) { (1 )

(1 2 )(1 2 )}

m
V R F F F

RR

m
F

R
γ

− ±
± ± ±

±
±

′′ ′′= − − −

− + − −

o o o o

oo

o o

o

       (35) 

The equation of motion for the wormhole throat, at this 

order of approximation, is 

2 21

2
( ) (3)R V R R O′′= − − +

o
& .         (36) 

Thus the wormhole is stable if and only if ( ) 0V R′′
o
f . The 

relation where ( ) 0V R′′ =
o

 corresponding to: 

2
2

22

2 2 2

2

2
2

2

( )
22 3

( ) {
2

(1 )

3 2
(1 2 )(1 )}

m q

Rm Rq
V R

mRR R q

R R

m q

R R
γ

±

±

±

±

−
′′ = − − +

− +

+ + − +

o o

o

oo o

o o

o

o o

    (37) 

It implies that every static throat with 
2γ
o  bounded at

3R m±=
o  and 0q = is characterized by 

2( 3 ) 2 9V R m m± ±′′ = = −
o , and 0q = . This result precludes 

the existence of stability regions including the throat radius 

3R m±=
o . It also imposes a clear cut separation between 

possible stability regions defined for 3R m±o
f or 3R m±o

p . 

 

6. Variable Equation of State 

The property
( )p

p
σ σ
σ

∂′ ′=
∂

, is suitable for EoS of the form

( )p p σ= . The integrability of (14) with variable EoS

( , )p p Rσ= , will be 

2
[ ( , )]p R

R
σ σ σ−′ = +               (38) 

Therefore, the present analysis of linearized stability with 

variable EoS ( , )p p Rσ=  requires the more general 

expression:  

p p
p

R
σ

σ
∂ ∂′ ′= +
∂ ∂

                (39) 

which takes into account the explicit dependence of pressure 

on throat radius. Using the new form of p ′ in equation (37) to 

get,  

2
2

22

2 2 2

2

2 2
2

2 2

( )
22 3

( ) {
2

(1 )

3 22
(1 2 )(1 )} 8 1

m q

Rm Rq
V R

mRR R q

R R

m mq q

R RR R
γ πζ

±

±

±

± ±

−
′′ = − − + +

− +

+ − + + − +

o o

o

oo o

o o

o o

o oo o

     (40) 

where 
R R

p

R
ζ

=

∂≡ −
∂

o

o . Assuming that 
2γ
o  is bound at 

3

2
R m±=
o

and
2 29

8
q m±= , then 

3 3 8

2 2 2 6
( , )V R m q m πζ± ±′′ = = =

o o          (41) 

which depends on the selected EoS through ζ
o
. 

Rewrite (25) in terms of the linear variable EoS: 

( )p Rω σ=                      (42) 

where R is the radius of thin-shell. In this mathematical 

modeling p is supposed to be: 

n

A
p

R
σ=                         (43) 

where A and n are real constants, and n ≠ 0. Inserting (43) into 

(38) to get, 

2 24
(1 ) 0

n

d A

dR R R
σ σ+ + =            (44) 

The solution of equation (44) is 
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4

2 2 4 1 1
( ) exp

n n

R A
R

R n R R
σ σ

   = −         

o

o

o

     (45) 

which satisfies the condition 
2 2( )Rσ σ=

o at the static 

equilibrium radius R R=
o
. Using (45) and (20) to get 

4

2 2 2 4 1 1
( ) 4 exp

n n

R A
V R F R

R n R R
π σ±

   = − −         

o

o

o

    (46) 

Differentiating V(R) with respect to R and evaluating the 

resulting expression at R R=
o
, I get ( ) 0V R′ =

o
 if and only if 

1( )

2

n nR m R
A

F

−
±

±

− −
= o o

o

                  (47) 

Inserting (47) into (45) and evaluating at 3R m±=
o

, to 

obtain 

2 2
2

2 4 2

1
2

2

3
( ) 1 exp

4 3

34
1 1

3

n

m q
R

R m

m q

n R m

σ
π

±

±

−

±

±

 
= + 

 

     − +          

            (48) 

which is not constant when n ≠ 0.The limiting behavior of 

equation (48) with n tends to 0, or let 3R m±= , will be  

2
2

2 2 2

1
( 3 ) 1

108 3

q
R m

m m
σ

π±
± ±

 
= = + 

 
          (49) 

The fact that equation (48) approaches a constant function, 

as n tends to 0 is expected on the basis of (30), which is 

derived in the framework of linear barotropic EoS. 

Substituting (47) into (46), determining ( )V R′′ , evaluating at 

R R=
o

, and introducing the dimensionless throat radius 

2R mχ ±=
o o

, to get 

(2) 2

3 2 2

2 21
4 2 4

1
( ) [2

( 1 4 )

(3 1) (1 ) ]n n

V n
q m

n n q mχ χ

χ χ
χ χ χ

χ
±

±

=
− +

− + + + − + −
o o

o o

o o o

o

       (50) 

where 
(2) 2( ) 4 ( )V m V Rχ ± ′′≅

o o . The second (dimensionless) 

derivative of V takes the approximate form 

(2)

2 2

1
( )

( 1 4 )
V

q m
χ

χ χ ±

−≈
− +o

o o

        (51) 

as 1χ →
o

. This result guarantees the negativity of 
(2) ( )V χ

o

near 1χ =
o

. Therefore, linearized stability can be achieved 

only if the sign of 
(2) ( )V χ

o  turns positive at some 1χ
o
f . 

Hence the importance of classifying the roots of 
(2) ( ) 0V χ =

o  

for non-vanishing n. The cubic equation, 

2 2
3 2

2 2

2

2

2 (3 1) ( )
2

1
( ) 0

4 4

q nq
n n n

m m

q n

m

χ χ χ
± ±

±

− + + + +

+ − − =

o o o

     (52) 

admits the roots: 

2
3

3 23

3 3 2 3
2

2

2
3

3 23

3 3 2 3
2

2

227 6

227 6

3 9

227 6

2 327 6

3 9

b bc d

aa ab bc d

aa a c b

a a

b bc d

aa ab bc d b

a aa a c b

a a

χ

 − + − 
 −  = + − + 
   

+ − 
 

 − + − 
 −  + + − − − 
   

+ − 
 

o

   (53) 

where 2a n= , (3 1)b n= − + ,

2 2

2 2
2

q nq
c n

m m± ±

= + + , and 

2

2

1
( )

4 4

q n
d

m±

= − − .Equations (42) and (43) completely remove 

the special character of throat radius 3R m±=
o

, ( 3 2χ =
o

) 

which arises in the barotropic case. Using (50) to determine 
(2) (3 2)V  as a function of n, then 

2 23 5
(2) 2 2

2 2

16[ ( ) 3 ]3
( )
2 27(1 3 )

n q n m
V

q m

±

±

− + +
=

+
         (54) 

Therefore 
(2) (3 2)V  is positive whenever 3 2n f , so 

static throats with dimensionless radius 3 2χ =
o

 can be 

linearly stable. 

7. Singular Equation of State 

In the cases of barotropic EoS (25) and variable EoS (43), it 

is found that the second and higher derivatives of V diverge as 

the static equilibrium radius approaches 2m± and q = 0. It is 

worth investigating if some of these irregularities can be 

mitigated by choosing a different type of variable EoS (i.e. a 

linear EoS with singular coefficient). In this limit the 

pressure-density ratio takes the approximate form 

( )

2

p R m

R Fσ
±

±

− −
=o o

o o o

                  (55) 

which is unbounded. This result is totally independent of the 

selected EoS. The above limit expression is compatible with 

the choice 

p
F

ψ σ
±

=                    (56) 
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which is another particular case of (42). The constant 

parameter ψ is to be determined at each static equilibrium 

radius. This EoS implies that, the dynamical pressure-density 

ratio p σ  becomes unbounded as R approaches 2m±  and q 

= 0. Also, equation (56) takes the approximate form p ψσ≈  

when 2R m±ff  and q = 0. The simple dependence of p on R 

and σ displayed in (56), as well as the associated limiting 

behaviors make this EoS an interesting candidate for 

linearized stability analysis. Evaluating (56) at R R=
o
 and 

combining the result with the general expression for p σ
o o

, 

derived from (21) and (22), to get 

( )

2

R m

R
ψ ±− −

= o

o

                     (57) 

which is negative definite when 2R m±o
f . It tends to 1 4−

as 2R m±→
o , and takes the approximate form 1 2ψ = − when 

2R m±ff . The fact that the equilibrium values of ω and ψ 

tend to the same limit as R0 becomes arbitrarily large 

motivates a comparison of linearzed stability properties of (25) 

and (56). The following analysis shows that the approximate 

identification of these EoS for 2R m±o
ff  is misleading, as 

the variability of (56) dramatically modifies the values of 

( )V R′′
o  in the whole interval ( 2 ,m± ∞ ). Inserting (56) into 

(38) and find the differential equation, 

2 24
(1 )

d

dR R F

ψσ σ
±

−= +                (58) 

which admits the local solution 

24 2 2

2 2

2 2

2 2

2

2

4 ( )

R R m R q

R R m R q

m R R
exp

m q

ψ

σ σ

ψ

±

±

±

±

 − + =    − +   

 −
 − 

o o o

o

o

         (59) 

The above expression fulfills the condition 
2 2σ σ=

o  at the 

equilibrium radius R R=
o
. Using (59) and (20) to get 

24 2 2

2 2 2

2 2

2 2

2
( ) 4

2

4 ( )

R R m R q
V R F R

R R m R q

m R R
exp

m q

ψ

π σ

ψ

±
±

±

±

±

 − + = −    − +   

 −
 − 

o o o

o

o

   (60) 

Combined with (21), this expression satisfies the 

equilibrium condition ( ) 0V R =
o

, also ( )V R′
o

vanishes if and 

only if ψis given by (57). Differentiate equation (58) twice 

times to get: 

3( ) 2V R m R±′′ =
o o                  (61) 

with 0q = , this is positive definite on the interval ( 2 ,m± ∞ ) 

and remains finite as the throat equilibrium radius 

R0approaches the Schwarzschild radius. The values of the 

higher derivatives of (60) at R R=
o
, can also be determined. 

These quantities become unbounded as 2R m±→
o

.  

8. Conclusions 

In the framework of Darmois-Israel formalism, the charged 

thin shell wormholes with variable equations of state are 

constructed, by matching the external RN solution with the 

internal RN solution across the singular surface. The 

linearized stability analyses of spherically-symmetric 

thin-shell wormholes by considering linearized radial 

perturbations around some assumed static solution of the 

Einstein field equations are obtained. 

Introduce two types of variable EoS leading to linearly 

stable RN thin-shell wormholes were proposed. In the case of 

EoS (43) I find semi-infinite stability regions determined by 

positive values of 
(2) ( )V χ

o . The corresponding boundaries 

get arbitrarily close to the horizon ( 1χ =
o

) as n → ∞ . It turns 

out that (2)V  and the higher derivatives of V evaluated at χ
o
 

become unbounded as 1χ →
o

. The case of EoS (56) is 

substantially different since ( )V R′′
o

 is definite positive 

throughout the entire interval ( 2 ,m± ∞ ), and remains bounded 

as 2R m±→
o

. However, the higher derivatives of V also 

diverge as 2R m±→
o

. Remarkably, linearized stability criteria 

[14], have been used despite the divergent derivatives of V as

2R m±→
o

. 

The parameter 
2γ
o , squared sound speed, defined in (32), is 

negative definite for linearly stable throats with radii 

3R m±o
f [15].  

It is not clear whether thin shell EoS arising from modified 

relativistic gas models would be compatible with the linear 

form (42) in certain limiting situations. Also, the motivation 

for including the singular coefficient in (56) may be 

questioned [16]. However, the emergence of linearized 

stability in the context of RN thin shell wormholes makes (42) 

an interesting choice. Particularly, the achieved stabilization at 

every throat radius is a remarkable consequence of (56) which 

deserves further attention. 

In the first case of variable EoS, with regular coefficients, a 

sequence of semi-infinite stability regions is found such that 

every throat in equilibrium becomes stable for a particular 

subsequence. In the second case, a singular EoS (in such 

variable EoS the coefficients is explicitly dependent on throat 

radius), the second derivative of the effective potential is 

positive definite, so linearized stability is guaranteed for every 

equilibrium radius. 

Finally, these variable EoS could have a significant impact 

on the stability of other gravitational sources incorporating 

thin shells (for example, lower-dimensional, cylindrical, 

intra-galactic, higher-dimensional, rotating, and 
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Einstein-Maxwell-Gauss- Bonnet wormholes, as well as stars 

and circumstellar shells, gravastars, and multi-layer spherical 

systems). 
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