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Abstract: We investigate a quantum mechanical system defined as an unsymmetrical bound magnetopolaron immersed in 

the field of the bulk longitudinal optical (LO)-phonon strong coupling. The ground and the first-excited state of the 

eigenenergy are derived by using variational method of Pekar type. The effect of the longitudinal and transversal confinement 

strengths, the effect of magnetic and electric field and the effect of the electron-phonon coupling constant on the polaron 

characteristics are investigated. These dependencies demonstrate that, they are more flexible tunable methods to restrain 

quantum decoherence and aggrandize the amplitude of the probability density. 
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1. Introduction 

With the exponential advancement of nanotechnology 

during these last years, the study of quantum computing and 

quantum information processing has generated widespread 

interest. The two-level system is usually employed as the 

elementary unit for storing information. Quantum 

computation will be based on the laws of quantum mechanics. 

Several schemes have been proposed for realizing quantum 

computers in recent years [1–9]. For quantum computers to 

have an edge over classical computers, they will need to 

carry thousands of qubits. Consequently, these quantum 

computers with large numbers of qubits will be most feasible 

as solid-state systems. However, self-assembled quantum 

dots (QDs) have attracted substantial attention due to their 

perfect crystal structures. The electric field effects 

on the energy of confined electrons and holes are studied 

theoretically in the frame-work of effective-mass envelope 

function theory,[10-13] which are useful for the application 

of quantum dots to photoelectric devices. One of the major 

concerns in QD's is the impurity states, which have attracted 

extensive attention in recent years [14-18]. More recently, the 

related problem of an optical polaron bound to a Coulomb 

impurity in a QD has also been considered in the presence of 

a magnetic field [19-20]. Imperfections being a rule rather 

than an exception, such an impurity-bound polaron problem 

[21, 22] is obviously more realistic and is therefore of much 

practical importance. Wang et al.[23] have recently studied 

the binding energy of hydrogenic impurities in a GaAs 

cylindrical QD by using a two-parameter variational wave 

function. By introducing a trial wave function constructed as 

a direct product form of an electronic part and a part of 

coherent phonons, Kandemir et al.[24] have investigated the 

polaronic effect on the low-lying energy levels of an electron 

bound to a hydrogenic impurity in a three-dimensional 

anisotropic harmonic potential subjected to a uniform 

magnetic field. Chen et al. [25] have investigated the effect 

of magnetic and electric field on bound polaron in the 

presence of the hydrogenic impurity; all the work done are 

not taken into account the two levels system.  

In the present paper, the effects of the electron-phonon 

interaction, the confining potential, the strength of electric 

and magnetic fields, and the Coulomb potential of 

hydrogenic impurity on the electron are discussed using the 

variational method of Pekar type. A single qubit can be 

envisaged as this kind of two-level quantum system in a QD. 
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For such a single-electron QD qubit, Li et al. presented a 

kind of parameter-phase diagram schemes and defined the 

parameters region for the use of the InAs/GaAs as a two-

level quantum system [26-29]. We have obtained the 

probability density of the polaron which oscillates with a 

given period when it is in a superposition of the ground and 

first excited states. The expressions relating the period of 

oscillation and the transition frequency of the polaron to the 

cyclotron frequency, electric field, density parameter and 

Coulomb potential are derived. 

This paper has the following structure: In section 2, we 

describe the Hamiltonian of the system and use the Pekar 

variational method to derive the ground and first excited 

states energy. In section 3, we present results and discussions 

and finally we end with the conclusion in section 4. 

2. Theory and Calculation 

We consider a system in which the electrons are moving in 

a polar crystal quantum dot with a three-dimensional 

harmonic potential and interacting with bulk LO phonons 

under the influence of an electric and a magnetic field. The 

electric field F  is along the ρ − direction while the magnetic 

field is along the z − direction with vector potential

, ,0
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A B

 = − 
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. The Hamiltonian of the electron–phonon 

interaction system with a hydrogenic impurity at the center 

can be written as: 
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and m  is the band mass while 1ω and 

2ω are the magnitudes of the transverse and longitudinal 

confinement strengths of the potentials in the xy − plane and 

the z − direction, respectively. ( )q qa a
+

denotes the creation 

(annihilation) operator of the bulk LO  phonon with wave 

vector q , ( ), ,x y zp p p p= and ( ),r zρ= are the momentum 

and position vectors of electron and ( ),x yρ = is the position 

vector of the electron in the xy −  plane. qV and α in (2.1) 

are given as follows:  
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The Fourier transform of the last expression of the 

Hamiltonian is written as follow 
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To evaluate the energy of our polaron, we use the Pekar 

variational method. To achieve our goal, we choose the trial 

function of strong–coupling that can be separated into two 

parts which individually describe the electron and the phonon. 

The trial function drawn from [30] is written as: 

0 phUψ φ=                              (2.3) 

Where φ depends only on the electron coordinate, 0 ph  

represents the phonon’s vacuum state with  

0 0q pha =
, and 

0 phU
 is the coherent state of the 

phonon, 

( )exp
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where ( )q q
f f ∗r r  is the variational function. We may choose the 

trial ground and the first-excited state wave functions of the 

electron to be 

2 2
0 0 0 0

0

2
exp exp

2 2

zλ µ λ ρ µφ
π π

     = − −     
         

        (2.5) 

1/2 3/4 2 2
1 1 1 1

1 1/4
2 exp exp

2 2

z
z

λ µ λ ρ µφ
π π

    = − −    
        

             (2.6) 

where 0 0 1 1, , andλ µ λ µ are the variational parameters. 

Equations (2.5) and (2.6) satisfy the following normalized 

relations: 

0 0 1 1 0 11 ; 0φ φ φ φ φ φ= = =
                  (2.7) 

Using the Pekar variational method, we have 

' 1H U HU−=
                         (2.8) 

By minimizing the expectation value of the Hamiltonian, 

that is  

0 0 0 0 1 1' 'E H and E Hφ φ φ φ= = , we then obtain 
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the magnetopolaron ground and first excited state energy in the following forms: 

1/22
0 0 0

0 0 4 4
0 000 1 0 2

0

1/2

0 0

000

0

21 1
arcsin 1

2 162
1

2 arcsin 1
2

1

cE
l l

e F

µ ω λ λλ α
λ µλλ µ π

µ

λ λπ γ
µλµ π

µ

∗

 
= + + + + + − − − 

   − 
 

 
− − − 

   − 
 

                                      (2.9) 

And 

1/22
1 1 1

1 1 4 4
1 111 1 1 2

1

1/2

1 1

111

1

3 21 3
arcsin 1

2 162
1

2 arcsin 1
2

1

cE
l l

e F

ωµ λ λλ α
λ µλλ µ π

µ

λ λπ γ
µλµ π

µ

∗

 
= + + + + + − − − 

   − 
 

 
− − − 

   − 
 

                             (2.10) 

Where 1 2
1 2

,l l
m mω ω

= =h h
 are the transverse and 

longitudinal effective confinement lengths of the QD, 

respectively. 
2eγ

ε∞
= is the Coulomb potential 

The superposition state of electron can be expressed as: 
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The time evolution of the state of the electron can then be written as 
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The probability density is in the following form: 
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is the transition frequency from ground state to the first level. 

3. Results and Discussions 

In this part, we show the numerical results of the ground 
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and first excited state energies, the transition frequency, the 

probability density and the period of oscillation versus the 

electron-phonon coupling strength, the cyclotron frequency 

and the electric strength parameter. 

In figures 1-2, we have plotted the ground and first excited 

state energy and transition frequency as a function of 

electron-phonon coupling strength α  for fixed 1 0.25l = ,

2.0 ; 5.0 0.5cF andω β= = =  (figure 1) and for 

1 0.60l =  (figure 2). These figures clearly illustrate that 

0 1,E E and ω  are increasing functions of the electron-phonon 

coupling strength α . Thus the state energies and the 

transition frequency of an Anisotropic QDs can be controlled 

by those parameters. In qubits, the electron-phonon 

interaction strength will increase when the system is confined, 

resulting in a larger transition frequency and the destroying 

of the superposition state (decoherence). The present result of 

controlling the superposition state by tuning the state 

energies and the transition frequency may have practical 

usage in quantum information processes. This is the third 

way by which the decoherence process can be eliminated, i.e., 

crystal materials with smaller coupling strength for the 

design of an anisotropic QDs. 

In figures 3-6, we have plotted the ground and first excited 

states polaron energy as a function of electric strength F  

(figure 3), coulomb potential β  (figure 4) and cyclotron 

frequency cω  (figure 5). In figure 6, we have plotted the 

transition frequency as a function of electric field strength F  

(figure 6(a)), cyclotron frequency cω  (figure 6(b)) and 

coulomb potential β  (figure 6(c)). From figure 3, we see that 

the ground and first excited state energy are the decreasing 

function the electric field strength. When the electric field 

becomes stronger, the electron moves away from the center 

and gets closer to the surface along the axis, resulting in the 

contribution of the bulk LO phonon to the binding energy 

being decreased, which are very important experimentally to 

control and modulate the intensity of optoelectronic devices. 

From figure 5, it’s obvious that the ground and first excited 

states energies are the increase function of cyclotron 

frequency. Since the presence of a magnetic field is 

equivalent to introducing another confinement on electrons 

which leads to greater overlap of the electron wave function, 

the electron-phonon interactions will be enhanced, and the 

ground and first excited states binding energies appears more 

obvious.  

Figs. 3 and 5 also illustrate that the ground and first 

excited states binding energy increases with increasing 

confinement strengths in the lateral and the longitudinal 

directions. This result is consistent with that of Lepine [31] 

and Chen [25]. From figure 4, it is obvious that the ground 

state binding energy is an increasing function of the Coulomb 

potential [25]. 

The transition frequency is the increasing function of the 

electric field strength, cyclotron frequency, Coulomb 

potential and longitudinal effective confinement lengths 

(figure 6). Thus, the electron energy, the electron-phonon 

interactions, the ground and first excited state energies and 

the transition frequency increase with the increasing 

magnetic field and impurity parameter. These results are in 

agreement with the results of Kandemir and Cetin [30] and 

those of Wei Xiao and Jing-Lin Xiao[1]. 

Figures 7-9 show the spatiotemporal evolution of the 

polaron probability density ( ) 2

01 , ,t zψ ρ  when the polaron 

exists in the superposition state of ( )01

1
0 1

2
ψ = +  for 

those parameters  

1 20.75 ; 0.80; 0.5 ;
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. (figure7 (b)) 
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. (figure8 (a)) 
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.(figure8 (b)) 
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F and

ω
α β

= = =
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.(figure9 (a)) 

1 20.75 ; 0.80; 2.5 ;

6.5 1.5 0.5

cl l

F and

ω
α β

= = =
= = =

.(figure9 (b)) 

The probability density increases with a decrease of the 

field strength, Coulomb potential. Near 0ρ =  the density 

has its maximal value. The probability density of the electron 

oscillates with a period of oscillation ( )0
1 0E E

τ =
−
h

 this 

means that the information is transferred from one state to 

another. 

Figure 10 (a) is a plot of the period of oscillation of the 

polaron in a quantum dot as a function of electric field 

strength for fixed 1 0.5l =  and differentα , figure 10 (b) is a 

plot of the period of oscillation of the polaron in a quantum 

dot as a function of the cyclotron frequency for fixed 1 0.5l =  

and different α  and figure 10 (c) is a plot of the period of 

oscillation of the polaron in a quantum dot as a function of 

Coulomb potential for fixed 1 0.5l = and different α . It is 

obvious from here that the period of oscillation is a 

decreasing function of the electric field, magnetic field and 

Coulomb potential. As a result of the electric field, magnetic 

field and Coulomb impurity, the ground and the first-excited 

state energies increase and the influence is greater on the 

first-excited state energy. The period of oscillation 0τ  

decreases, that is to say the life time of a qubit reduces, so the 

process of decoherence is quickened [32-34]. It can be very 

harmful to store information with the QD as its elementary 

unit. 
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Figure 1. (a) Ground state energy 0E in function of the electron-phonon coupling strength α for fixed 1 0.25l = , 2.0 ; 5.0 0.5cF andω β= = =
; 

 (b) 

First excited state energy 1E in function of the electron-phonon coupling strength α for fixed 1 0.25l = , 2.0 ; 5.0 0.5cF andω β= = =
 

 

Figure 2. (a)Transition frequencyω  in function of electron-phonon coupling constant α  for fixed 1 0.6 ; 2.5 0.5l F and β= = =
; 

(b)Transition frequency

ω  in function of electron-phonon coupling constant α  for fixed 1 0.6 ; 4.5 0.5cl andω β= = = ,
 
(c) Transition frequency ω  in function of electron-

phonon coupling constant α  for fixed 1 0.6 ; 2.4 4.0cl F and ω= = =
. 

 

Figure 3. Ground state and first excited state energy as a function of the electric field strength F  for fixed 1 0.25l = . 
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Figure 4. Ground state and first excited state energy as a function of the Coulomb potential β  for fixed 1 0.25l = . 

 

Figure 5. Ground state and first excited state energy as a function of the cyclotron frequency cω  for fixed 1 0.25l = . 

 

Figure 6. (a) Transition frequency ω  in function of electric field strength F  for fixed 1 0.45 ; 10 ; 6.5 0.5cl andω α β= = = =
; 

(b) Transition frequency 

ω in function of the cyclotron frequency cω  for fixed 1 0.5 ; 5.5 ; 6.5 0.5l F andα β= = = =
;
 (c) Transition frequency ω in function of the Coulomb 

potential β  for fixed 1 0.5 ; 2.5 ; 6.5 1.5cl F andα ω= = = =  
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Figure 7. (a) Spatiotemporal evolution of the electron probability density in superposition state of 0 1and  for 

1 20.75 ; 0.80; 0.5 ; 6.5 1.5 0.5cl l F andω α β= = = = = =  ; (b) Spatiotemporal evolution of the electron probability density in superposition state of

0 1and  for 1 20.75 ; 0.80; 3.0 ; 6.5 1.5 0.5cl l F andω α β= = = = = =
 

 

Figure 8. (a) Spatiotemporal evolution of the electron probability density in superposition state of 0 1and  for 

1 20.75 ; 0.80; 1.5 ; 6.5 1.5 0.5cl l F andω α β= = = = = =
; 

 (b) Spatiotemporal evolution of the electron probability density in superposition state of 

0 1and  for 1 20.75 ; 0.80; 1.5 ; 6.5 1.5 2.0cl l F andω α β= = = = = =  

 

Figure 9. (a) Spatiotemporal evolution of the electron probability density in superposition state of 0 1and  for 

1 20.75 ; 0.80; 2.5 ; 6.5 0.5 0.5cl l F andω α β= = = = = =
,
 (b) Spatiotemporal evolution of the electron probability density in superposition state of 

0 1and  for 1 20.75 ; 0.80; 2.5 ; 6.5 1.5 0.5cl l F andω α β= = = = = = . 
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Figure 10. (a) The period of oscillation of polaron in a quantum dot as a function of the electric strength F  for fixed 1 0.5l =  and different α , (b) The period 

of oscillation of polaron in a quantum dot as a function of the cyclotron frequency cω for fixed 1 0.5l =  and different α ; (c) The period of oscillation of 

polaron in a quantum dot as a function of the Coulomb potential β for fixed 1 0.5l = and different α . 

4. Conclusion 

In this paper, we have derived the ground and first excited 

state energies of the bound magnetopolaron under an electric, 

magnetic field and Coulomb potential in an asymmetric 

quantum dot and their relevant eigen-functions using the 

Pekar variational method. The single qubit can be envisaged 

as this kind of two-level quantum system in QDs. The 

probability density of electron oscillates with a period when 

the polaron is in the superposition state of the ground and the 

first-excited state. The probability density of the polaron 

increases with a decrease of the electric field, magnetic field 

strength and Coulomb potential in the superposition state 

while the period of oscillation decreases with increasing 

electric field magnetic field strength and Coulomb potential. 

Our results should be meaningful for designing the solid-state 

implementation of quantum computing both theoretically and 

experimentally and also for the control of decoherence in 

quantum system. 
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