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Abstract: We report on a simple study involving a single non-Brownian sphere settling under the influence of gravity in a 

quiescent viscous fluid housed in a finite square duct. Spheres are shown to achieve terminal velocity in a fraction of the time 

predicted by infinite fluid dynamics. Terminal velocities agree well with right cylinder equations for spheres with diame-

ter-to-width ratios less than 0.45. The finite chamber length results a two-phase flow and interesting wake field dynamics for 

spheres with diameter-to-width ratios greater than 0.255. 
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1. Introduction 

The problem of a single sphere falling under the influ-

ence of gravity through an infinite Newtonian fluid is both 

well known and well understood; however, the influence of 

impermeable boundaries on the hydrodynamics of single 

spheres continues to be of interest today[1]. Expressions 

have been derived for the motion of a single sphere in the 

presence of a single and parallel plane walls[2, 7]. Vassuer 

& Cox, for example, have thoroughly discussed the lateral 

motion of spheres in the vicinity of plane walls[3]. Other 

expressions have been developed for a single sphere in a 

right cylinder[4–6]. The increased resistance experienced 

by the sphere is a consequence of the no-slip boundary 

condition at each wall and serves to reduce the terminal 

velocity of the falling sphere; however, the flow in a right 

square duct is not directly obtained through superposition 

of the parallel infinite wall configuration[6]. Furthermore, 

closing one end of the vertical tube or duct would clearly 

increase this resistance as a consequence of an upward flow 

mandated by volume conservation; therefore, the terminal 

velocity of the falling sphere would be further reduced. The 

motions of spheres in confined geometries are of signific-

ance to many engineering applications, including damped 

pistons, food & mineral processing, and oil exploration. 

Such confined geometries can also be found in microflui-

dics, as parallel planes and square ducts are easily con-

structed. 

In the present paper, we examine a single acrylic sphere 

falling along the axis of symmetry of a vertical, square, 

finite duct under the influence of gravity through a viscous 

mixture of glycerol and water. The sphere achieves terminal 

velocity in a fraction of the time predicted by infinite fluid 

dynamics, and the two-phase flow due to finite chamber 

length results in unexpected wake field dynamics with large 

particles. Our results are directly applicable to instances of 

spherical objects moving in confined geometries and are 

not readily accessible through numerical simulations due to 

the asymmetrical boundary conditions. 

2. Experiment 

A sketch of the test chamber is shown in Figure 1. The 

outer chamber is 18 cm square and 30 cm tall with 6 mm 

thick acrylic walls. The inner chamber has an interior width 

of 4.34 cm, is 38 cm tall, and has 5 mm thick acrylic walls. 

Water held at a constant 20.00°C flows through the ap-

proximately two inch gap between the chambers at ap-

proximately 7 liters per minute thereby turning the volume 

of the chamber over every 40 seconds and maintaining 

thermal equilibrium. Temperature fluctuations in the regu-

lated water were less than 0.005°C. This thermal control 

keeps the thermal convection current to less than 50 microns 

per second, an order of magnitude smaller than the speed of 

the slowest sphere used in this experiment, 800 microns per 

second. 

The sample fluid is a homogenous mixture of water, 

glycerin, and a polymer flake tracer solution. The propor-

tions of glycerin and water are adjusted so that the solvent 

has density ρf = 1.174±.002 g·cm
−3

 and viscosity η = 

19.6±0.5 centipoise (cp). The density of the acrylic spheres 

ranges from ρs = 1.18±.01 g ·cm
−3

 to ρs = 1.27±.01 g ·cm
−3
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depending exclusively upon sphere diameter. Density vari-

ations within a given size were less than 1%. The diameters 

of the acrylic spheres ranges from 1/16 inch (d = 0.159 cm) 

to 1 inch (d = 2.54 cm) with a deviation in diameter for each 

sphere of less than 1%. This size range results in 0.0365 ≤ 

d/W ≤ 0.585 where d is the diameter of the spheres and W = 

4.34 cm, the interior width of the square vertical duct. 

Reynolds numbers (Re) based on diameter and Stokes Ve-

locities ranged from 0.002 < ∆ρ·d·U0/η < 52; whereas, 

Reynolds numbers based on diameter and measured veloci-

ties range from 0.002 < ∆ρ·d·U/η < 2. 

Flow visualization is accomplished using flat polymer 

flakes 300-350 microns in diameter which align their surface 

area normal vectors orthogonal to the local shear flow. Full 

height images were illuminated symmetrically by 4 incan-

descent lamps. Close-up flow visualization was illuminated 

using co-aligned 1 mm thick sheets of mono-chromatic laser 

light, as shown in Figure 2. All image sequences were col-

lected using a 1.2 megapixel single-chip color CCD camera. 

Frame rate was controlled at the camera by an external dig-

ital electronic hardware trigger and varied from 10 frames 

per second to 2 seconds per frame, depending on sphere 

velocity, with accuracy ±10
−6

 seconds per frame. The fluid is 

randomized by stirring and subsequently allowed to return to 

a quiescent state between each successive drop. A vacuum 

holding and release mechanism was used to release the 

spheres at 0 velocity without disturbing the quiescent fluid. 

 

Figure 1. A side view of the apparatus used. The central column is the 

sample fluid through which the sphere falls under the influence of gravity. 

The grey fluid surrounding the central column is thermally regulated water 

set to 20°C. The camera lens provides a narrow view of a 4.5 cm × 4.5 cm 

section of the central column illuminated by a 1 mm thick laser sheet. 

 

Figure 2. A top view of the apparatus used. The central column is sur-

rounded on all sides with thermally regulated water set to 20°C. The cam-

era is positioned such that the view width of 4.5 cm matches the central 

column width, 4.34 cm. Two co-aligned 1 mm thick laser sheets, one red & 

one green, illuminate the sample from opposing sides. 

3. Observations 

3.1. Terminal Velocity 

Spheres were dropped from an initial height of 28 cm and 

tracked as they traversed the full height of the chamber. 

Spheres were tracked manually throughout their travel, and 

velocities were calculated using U = ∆z/∆t where ∆z is the 

displacement in the x−z plane and ∆t the time between 

successive frames. Measurements for each size tested were 

taken for viscosities between 16 cp < η < 24 cp. 

The equations of motion are given by the balance of gra-

vitational and drag forces by Stokes Law: 

 

where g is the acceleration of gravity, a is the radius of the 

sphere, η is the viscosity of the fluid, ρf is the density of the 

fluid, and ρs is the density of the sphere. If we define the 

characteristic time, t0, as 

                  (1) 

the velocity of a sphere dropped in an infinite fluid as a 

function of time is found to be 

 (2) 

where U0 is the Stokes Velocity. 

The 1 inch diameter sphere was tested at viscosities of 

16.6 cp, 19.5 cp, and 20.4 cp. The measured axial velocities, 

UZ, are shown in Figure 3. As expected, wall interactions 

cause the axial velocities to deviate almost immediately 

from the infinite fluid prediction, given in Equation 2 and 

shown by the dotted line in Figure 3. Whereas Equation 1 

predicts terminal velocity should be achieved in approx-

imately 12 seconds, Figure 3 shows all trials achieve ter-

minal velocity in 2.5 seconds for each of the viscosities 

tested. The half-inch sphere was tested at viscosities of 16.6 

cp, 19.5 cp, and 23.4 cp. Whereas Equation 2 predicts ter-

minal velocity in approximately 3.5 seconds, Figure 4 shows 

terminal velocity is achieved between 1.5 and 2.5 seconds. 

The other diameters each demonstrated similar results, 

achieving terminal velocity in less than 2.5 s. 

In an infinite duct, the time necessary for the flow to be-

come stationary is given by the diffusion of vorticity: 

 

The length, L, is the distance between the sphere and wall,  

 

so the diffusion time from sphere to wall & back is  
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Figure 3. The vertical fall speed, U, versus time, t, for the 1 inch (2.54 cm) 

diameter sphere. The maximum Reynolds number achieved during this trial 

is Re = 0.17 based on terminal velocity. The dotted line represents the 

velocity curve for a similar sphere in an infinite viscous fluid as predicted 

by Equation 2. Speeds are shown for the first 6 seconds after release for 2 

runs each at the following 3 viscosities: 16.6 cp, 19.5 cp, and 20.4 cp. In 

each case, the spheres reach the same terminal velocity within 2.5 s. The 

terminal velocity is approximately 10% of the predicted infinite fluid set-

tling velocity, U0. 

 

Figure 4. The vertical fall speed, U, versus time, t, for a half inch (1.27 cm) 

diameter sphere. The maximum Reynolds number achieved during this trial 

is Re = 1.2 based on terminal velocity. The dotted line represents velocity 

curve for a similar sphere in an infinite viscous fluid as predicted by Equ-

ation 2. Speeds are shown for the first 6 seconds after release for the fol-

lowing 3 viscosities: 16.6 cp, 19.5 cp, and 23.4 cp. In each case, the spheres 

reach the same terminal velocity within 2.5 s. The terminal velocity is 

approximately 25% of the predicted infinite fluid settling velocity, U0. 

However, the duct in this experiment is not infinite. The 

downward motion of the sphere requires the displacement of 

fluid past the sphere itself. The fluid cannot move ahead of 

the sphere, as it would if the duct was infinite. Instead, it 

must move upward and around the sphere. For smaller 

spheres, this is not a significant problem; however, the larger 

spheres occlude a significant percentage of the duct cross 

section, and the bulk of the flow is compressed into the 

square corners. This describes a two-phase flow; conse-

quently, the time necessary for the flow to become stationary 

must be described by the mixing time  

 

where U∞ is the terminal velocity of the system. Therefore, 

the time for the 1 inch diameter sphere to reach steady state 

is 

 

which is consistent with our laboratory observations and 

less than the time necessary for the sphere itself to reach 

terminal velocity. 

Axial velocities versus height were also tested to verify 

terminal velocity was achieved before entering the field of 

view shown in Figure 1. Axial velocities as a function of 

height, shown in Figures 5 and 6, illustrate each sphere 

achieves terminal velocity in less than 20% of initial height, 

5.6 cm, and maintained that speed until less than 10% of 

initial height from the chamber floor, or 3 cm. Figure 1 

shows the sphere has 16 cm of travel before entering the 

front camera view; furthermore, the sphere is still 17 cm 

from the chamber floor when it leaves the camera view. 

These distances are sufficient to ensure the sphere achieves 

terminal velocity well before entering throughout the field of 

view, and maintains terminal velocity well after leaving the 

field of view. This independently verifies measurements on 

the field of view itself, where the sphere’s initial velocity 

upon entering the field of view and final velocity as it leaves 

the field of view differed by less than a pixel and was, 

therefore, immeasurable. Even if we add an additional 1.7 s 

for the mixing to occur at terminal velocity, the sphere has 

only traveled 5.6 cm+1.8 cm = 7.4 cm, which is less than 

half the distance from the chamber top to the top of the 

viewing window. Therefore, even accounting for mixing, the 

flow is clearly in steady state well before entering the 

viewing area. 

 

Figure 5. The vertical fall speed versus Z-Height for the 1 inch (2.54 cm) 

diameter sphere. The maximum Reynolds number achieved during this trial 

is Re = 0.17 based on terminal velocity. The bottom of the chamber is taken 

as z = 0, so spheres are falling Right-to-Left. The initial height is set to z0 = 

28 cm in each case. Speeds are shown for z = z0 to z = 0 for 2 runs each at 

the following viscosities: 16.6 cp, 19.5 cp, and 20.4 cp. In each case, the 

spheres reach the same terminal velocity within 20% of z0, or approximately 

6 cm, and maintain terminal velocity until they are within approximately 10% 

of z0, or 3 cm, of the bottom. The terminal velocity of each sphere is ap-

proximately 10% of the infinite fluid settling velocity, U0. 
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Figure 6. The vertical fall speed versus Z-Height for the 1/2 inch (1.27 cm) 

diameter sphere. The maximum Reynolds number achieved during this 

trial is Re = 1.2 based on terminal velocity. The bottom of the chamber is 

taken as z = 0, so spheres are falling Right-to-Left. The initial height is set 

to z0 = 28 cm in each case. Speeds are shown for z = z0 to z = 0 for 2 runs 

each at the following viscosities: 16.6 cp, 19.5 cp, and 20.4 cp. In each 

case, the spheres reach the same terminal velocity within 20% of z0, or 

approximately 6 cm, and maintain terminal velocity until they are within 

approximately 10% of z0, or 3 cm, of the bottom. The terminal velocity of 

each sphere is approximately 25% of the infinite fluid settling velocity, U0. 

3.2. Reverse Wake Flow 

Volume conservation in this closed container requires the 

sphere to displace the fluid beneath it as it falls, thereby 

generating an upward flow in the chamber. Smaller spheres 

have both less volume and less velocity so the unoccupied 

region between sphere and wall is more than sufficient to 

handle the upward flow; however, spheres with diameters 

d/W > 0.255 displace fluid faster due to increased sphere 

volume and mass. The region between sphere and wall is 

also smaller, and the upward flow is compressed into the 

corners to minimize viscous losses. We believe the corner 

flows converge behind the sphere due to decreased local 

hydrodynamic pressure and form the upward flowing re-

gion in the wake of the sphere shown in Figure 7. The up-

ward flow in the wake is approximately 1 sphere radius in 

diameter. 

 

(a) 

 

(b) 

Figure 7. The top is picture is a differential image created by comparing 

adjacent frames in a movie sequence indicating the flow field around a 

2.54 cm sphere, d/W = 0.585. Motion indicated in this image is directed 

from Black toward White. The bottom picture is a vector field plot created 

using particle image velocimetry on the same movie sequence. The circle 

has been added to represent the location of the sphere and provide a point 

of reference. The longest vectors are equivalent to the terminal velocity of 

the sphere, 1.08 cm/s. The Reynolds number based on diameter and ter-

minal velocity is Re = 0.17. The distance r is measured from the sphere 

center to a stagnation point indicated behind the sphere where magnitude 

velocity drops near 0. In this case, the distance r/a ≈ 2.1, where a is the 

sphere radius. A “V” formation shows the upward moving fluid. The width 

of this column is approximately 1 sphere radius. The magnitude velocity is 

approximately 10% of the terminal velocity of the sphere. 

Particle image velocimetry measurements were taken for 

each sphere. The velocity vectors for a 1 inch diameter 

sphere are shown in Figure 7 adjacent to a differential im-

age from the same sequence for comparison. Using these 

velocimetry measurements, central velocities were deter-

mined by considering all velocity vectors within 

�x� �  y�  ≤ a/2 at intervals of ∆z = 0.50 mm. For each 

interval an average axial velocity is determined. The aver-

age central velocities for the three largest spheres are 

shown in Figure 8. In each case, the central velocity ap-

proaches the sphere velocity as r/a → 1, as expected. The 

central velocity decreases exponentially until it crosses the 

horizontal axis. The velocity ratio becomes negative 

beyond this point indicating the flow is traveling opposite 

to that of the sphere. The location of these stagnation points 

are given in Figure 9 as a function of size. The distance 

from the sphere center to the convergence point, r/a, de-

pends non-linearly upon the size of the sphere. This may be 

a consequence of increased mass, speed, and volume dis-

placement of the sphere correlated with the cross-sectional 

area of the duct. The dashed vertical line approximates the 

critical diameter taken to be halfway between 0.219 and 

0.292, or d/W ≈ 0.255. 
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(a) 

 

(b) 

 

(c) 

Figure 8. The average dimensionless central axial velocity, UZ /UT, as a 

function of distance from sphere center. Averages are taken over a region 

of  –a/2 < x < a/2 and heights ∆z = 0.50 mm based on velocimetry mea-

surements in that area where a is the radius of the sphere. The value 

r/a==1 equates to the top edge of the sphere, and UZ /UT == 1 equates to 

terminal velocity, UT. The Reynolds Numbers based on diameter and ter-

minal velocity are: (A) 0.17, (B) 0.18, and (C) 1.8. The stagnation point in 

the wake field is indicated where the velocities cross the horizontal axis, 

hence changing vertical direction. 

While the Reynolds number based on measured velocity 

for the flow shown in Figure 7 corresponds to Re = 0.17, 

no clear correlation between r/a and the Reynolds number 

is noted. The largest measurement, r/a = 12, occurs at the 

value Re = 1.2; whereas, the largest Reynolds number of 

Re = 1.8 yields r/a = 4.5 and corresponds to the sphere 

shown in Figure 8-C. 

 

Figure 9. Dimensionless distance r/a versus the diameter ratio d/W, where 

r is the measured distance from sphere center to the stagnation point pre-

ceding the start of upward fluid velocity (see Figure 7), a is the radius of 

the sphere, d is the diameter of the sphere, and W is the inner width of the 

square duct. The dashed vertical line indicates the estimated critical ratio, 

d/W ≈ 0.255. Horizontal error bars are based on the error in size, 0.01 cm, 

and vertical error bars are based on the accuracy in r shown in Figure 7. 

3.3. Finite Terminal Velocity 

The terminal velocities measured agree well with values 

predicted by equations for right circular cylinders up to d/W 

values of 0.45, even though the geometry is square, as 

shown in Figure 10. A round cylindrical chamber requires 

U/U0 → 0 as d/W → 1; however, in a non-circular chamber, 

U/U0 approaches some non-zero limit as d/W → 1, as noted 

by Pitois, Pasol, & Vignes-Adler[8]. Our results in Figure 10 

suggests a limit U/U0 ≈ 0.2 for a right square duct which is 

in good agreement with the value 0.25 reported by Pitois. 

 

Figure 10. Dimensionless settling Velocity U/U0 versus the diameter ratio 

d/W. U is the measured settling velocity, U0 is the Stokes Velocity, d is the 

diameter of the sphere, and W is the inner width of the right cylindrical 

chamber. The dashed line represents the theoretical velocity of a sphere 

falling along the axis of symmetry in a right circular cylinder. Horizontal 

error bars are based on the error in size, 0.01 cm, and vertical error bars 

are based on the variance in terminal velocity as in Figures 5 & 6. 

5. Conclusion 

We have examined spheres falling in a vertical square 

duct. In each case, spheres achieve terminal velocity in less 

than 2.5 s from release during which time they travel less 

than 6 cm. Terminal velocity is found to agree well with the 
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right cylinder velocity equations for diameter-to-width ra-

tios d/W < 0.45. Our results suggest a finite terminal velocity 

of U/U0 ≈ 0.2 as d/W → 1, which agrees well with the value 

0.25 reported by Pitois. Spheres with d/W > 0.255 demon-

strate a wake flow traveling in the opposite direction of the 

sphere about the axis of symmetry of the duct, one sphere 

radius in diameter. The point where the flow reverses direc-

tion varies non-linearly with sphere diameter. 
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