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Abstract: We investigate the problem of the vaporization of a liquid droplet in a hotter environment of the same fluid. The 

Navier-Stokes equations are solved for a physical model which assumes spherical symmetry and laminar conditions in the 

quasi steady case. The study is mainly characterized by the fact that the equation of conservation of momentum is effectively 

taken into account and the velocity of the drop is not always uniform. Recession laws which are different from the classical 

�� law can be derived from the zeroth order approximation solution. Additional assumptions on the thermodynamical 

properties of the gas phase in subcritical conditions restore the classical law and permit the determination of an analytic 

expression for the vaporization ratio K. The analysis of the evolution of the temperature, the density and the velocity in the 

droplet and in the gaseous phase reveals the existence of shock waves which develop from the center of the droplet towards its 

boundary and an unbalanced energetic layer attached to the interface when the velocity is not uniform in the drop. 
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1. Introduction 

The combustion and the evaporation of drops play a key 

role in the performance of internal combustion engines as 

gas turbines or rockets engines which conception is still 

based on empirical knowledge and a theory which does not 

enough take into account the complexity of the physical 

processes involved as well as the environment in the com-

bustion chamber [1]. In these systems, the fuel is injected in 

the combustion chamber as a cloud of drops which vaporize 

and oxidize to release heat. The study of the evaporation of a 

drop isolated in an infinite environment, with diverse sim-

plifying hypotheses, supplies important information for the 

understanding of these phenomena. 

Following the pioneering works of Godsave [7] and 

Spalding [10], is developed a theoretical model which de-

scribes the process of evaporation of a drop in the subcritical 

condition. This model, which is termed “Quasi-Steady 

Model” and also called �� -law, predicts  that during the 

evaporation process, the droplet surface area, represented by 

the drop-squared diameter (the droplet being spherical), 

decreases linearly during its lifetime. Although this model is 

very successful in describing the vaporization process of 

fuel drop, the assumptions upon which the model has been 

developed are subjected to several experimental and nu-

merical analyses [11], [12],[13]. Amongst the most contro-

versial assumptions are those of constancy and uniformity of 

the macroscopic variables and the thermodynamic coeffi-

cients in the cold drop, the absence of convection and the 

steadiness of the gaseous phase which fits instantaneously 

the changes in the boundary conditions and the variation of 

the size of the drop. Concerning the first one of these as-

sumptions, many numerical studies demonstrate the exis-

tence of an unsteady period of transition prior to the occur-

rence of the ��-law. During this period, all the heat supplied 

to the drop is used to heat-up the liquid to its equilibrium 

temperature i.e. wet bulb temperature. Once this temperature 

is achieved, then all the heat transferred into the drop is used 

to gasify the liquid. Experimental and numerical results 

showed that the ��- law holds in the presence of convection 

but only once the drop reaches its thermal equilibrium. It 

must be recalled that the idea behind this assumption is to 

reduce numerical calculations and develop a rather simple 

analytical solution based on spherical symmetry. Regarding 

the third assumption, it was found that the �� -law is no 

longer valid if the gaseous phase surrounding the droplet is 

unsteady [8],[11]. However its influence on this law is still 

not completely known. We determine in this work, by de-

veloping a formalism valid in subcritical conditions as well 

as in supercritical ones, recession laws of the radius of a drop 

of fluid suddenly introduced into a hotter environment of the 
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same fluid and we compare them with the classic �� -law  

in an attempt to clarify the questions raised in the previous 

paragraph. We then analyze the evolution of the macros-

copic variables of the flow in the drop and in the gaseous 

phase. 

In the section 2 we formulate the mathematical problem 

resulting from the modeling of the drop’s vaporization 

phenomena by a spherically symmetrical drop evaporating 

in an infinite atmosphere initially in rest with uniform and 

constant pressure. After an asymptotic analysis we establish 

the quasi-steady equations. In the section 3 we solve ana-

lytically these equations and we establish recession laws, 

which in the general case differ from the classical ��-law of 

the drop’s radius. We deduce by making simplifying as-

sumptions on the calorific capacity and the thermal  con-

ductivity of the gas,  linear and nonlinear ��-laws of time. 

Analytical solutions obtained in first approximation allow 

the study in the section 4 of the temperature, the density and 

the velocity in the drop and in the gaseous flow. 

2. Position of the Problem 

A drop of pure liquid of temperature uniformly equal to 

the temperature of saturated vapor at the subcritical pressure 

considered is abruptly introduced into a hotter infinite at-

mosphere initially in the rest. The radius, the density and the 

temperature of the drop at the initial moment are respec-

tively ���0� 	 �
�� , 
��0� 	 

��  and  ����� 	 �
�� . The 

gaseous flow surrounding the drop is in a steady state cha-

racterized by a temperature  �
� , a pressure �
�  and a 

density  

� . We suppose that there are neither external  

volume forces nor a forced convection, the initial spherical 

symmetry of the drop is thus preserved in the time. 

We denote by �
 the distance from the center of the drop 

and by �
 the radius of the drop. A law of state (which will 

never be specified in the study because of the uniformity of 

the pressure) gives the pressure �
 in the flow as function of 

the density 

 and the temperature �
; �
 is the velocity of 

the flow. The fluid is supposed perfect and we obtain the 

following system of conservation equations for the problem: 

  

We rewrite these equations in a reference moving with the 

boundary of the drop and we introduce the variable �� 	
�� � �
. We retain two characteristic times in the description 

of the phenomenon: the characteristic time of thermal dif-

fusion �
��� and the drop’s lifetime  �
���. To take into 

account the gradient of density in the environment, we use 

two characteristic densities: 

�  in the drop and 

� in the 

surrounding gas. We introduce the nondimensional num-

bers �� 	 ��� ! 
��"#$

, % 	 &�' 
&�(  ,  �) 	 *+�',� -.&�'

/�'��� !
  and the 

following nondimensional  variables: 

 

Then the nondimensionl equations of the problem are 

given by: 

 

with the initial conditions : 

 

 

the boundary conditions  : 

 

and the jump relations  : 

 

0
 is the total enthalpy corresponding to the relative mo-

tion. 

The use of two characteristic times and two characteristic 

densities in the dimensional analysis yields the two nondi-

mensional numbers ��  and %  and the thermal Peclet 

number �) based on the characteristic quantities of the gas 

phase. The asymptotic studies conducted on this topic[2], [4], 

[9], generally use either �� or % as small parameter. The 

form (3) of the nondimensional equations of conservation of 

the mass and the conservation of energy shows that unsteady 

phenomena are governed by the ratio 1 	 2'
% .  In the equa-

tion of conservation of the momentum, it controls the terms 

related to the variation of  the radius of the drop. It will be 

the small parameter of the asymptotic expansions. We notice 

that when one of the nondimensional numbers �� or % is 

equal to one, we have the usual asymptotic expansions. 

The effects due to the thermal expansion of the fluid and 
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to the Stefan flow propagate in the gas with a characteristic 

speed very small relative to the speed of sound in the gas. So 

we can assert, for times that are very long compared to the 

characteristic acoustic time, that the pressure is uniform in 

the gaseous phase. We shall assume in the sequel that the 

pressure is uniform in all the flow. In first approximation, 

when this last assumption is taking into account, we obtain 

the system of the quasi- steady equations of the model: 

 

In contrast with the classical formalism [2] the equation  

of  conservation  of  the  momentum is taken into ac-

count. 

3. The Drop Radius Recession Laws 

We integrate the first and the third equations of the system 

(11) and we find: 

 

The gas is at rest, we thus have  34 	 ����56 . The jump 

relations (10) can then be written: 

 

The relations (12) written on the boundary of the drop by 

taking into account the relation (13) give: 

 

The relation (14) gives the differential equation which 

describes the drop’s radius evolution versus the time. It is 

however necessary to determine completely the function of 

time 7 which depends upon the temperature to know the 

exact dependence law of the drop’s radius of the time. We 

discuss the case where the heat capacity and the thermal 

conductivity are uniform and the case where they depend on 

time and on � through the temperature. 

3.1. Uniform Heat Capacity and Thermal Conductivity : 

the d
2 
Law 

We assume now that the quantities 85 and 9:5  do not 

depend explicitly on the space variable �. Then the integra-

tion of the second equation (12) gives: 

 

Using the boundary conditions we have: 

 

We substitute the expressions (16) of 7��� in the relation 

(14) and obtain after computations the relation: 

 

which is a d
2 
-law except the fact that the function of the 

second member is not a linear function of the time. When it 

is assumed that  ;5, 85 and 9:5 are constant we obtain the 

classical d
2
 -law: 

 

We can notice that the evaporation rate < has an explicit 

analytical expression which is similar to the one found in [6], 

[7]. 

3.2. Heat Capacity and Thermal Conductivity Depending 

on the Temperature 

When the thermal conductivity and the heat capacity de-

pend on � and � through the temperature, the third equa-

tion (11) is expanded in the form: 

 

We infer from this: 

 

which gives by using the jump relations of the energy 

conservation equation: 

 

The expression of the function 7 must therefore be de-

termined to establish the recession law of the radius of the 

drop. By integrating the equation (20) we get the following 

relation: 

 

Hence by making � tend towards =∞ we get: 

 

It is difficult to obtain  a completely  analytical  ex-

pression of the function 7 which obviously depends on �5 

in the general case because of the form of ?���. In the par-

ticular case where it assumed that @ and 
*+A
/A

 do not depend 
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explicitly on � , we obtain: 

 

When we go back to dimensional variables, we have 
B
�A

	  C�A��A
D�  , 7
 being the thermal diffusivity. In subcriti-

cal conditions 7
 is finite whereas 3
5 and �
5 are very 

small; 
B

�A  is thus small and one can make the approximation  

exp H B
�A

I � 1 K B
�A  . 

Substituting  in (23) we have: 

 

Hence comparing with (21) we get the d
2
 -law 

 

We can notice that the function of time is always inversely 

proportional to the ratio 
2'
%  and that the integrand depends 

only on the values of the thermodynamic coefficients at the 

interface and in the gaseous phase. If the thermodynamic 

coefficients are constant in the gas we have the classical d2- 

law. 

4. Study of the Macroscopic Variables of 

the Flow 

The fact that the pressure is uniform allows to decouple 

the system of the conservation equations and to treat sepa-

rately the system formed by the conservation equation of the 

mass and the conservation equation of the momentum and 

the conservation equation of the energy. 

The equations (12) and (13) allow putting the system of 

the conservation equations of the mass and the momentum 

into the following form: 

 

The form of the second equation (27) suggests the re-

search of the solution for the velocity in this form 

35 ��, �� 	 M�N�
4��� . We infer from this: 

 

The solution is thus singular in  �� . We find for non 

ro ��: 

 

We infer from this, by using the mass quasi-steady equa-

tion, the expression of the density which is: 

 

The solution (30) takes into account the variation of the 

relative velocity versus � in the drop and in the gaseous 

phase. The boundary conditions on the interface are written 

for )5  O 0 in the following form: 

 

They permit when )5  tends towards zero, that is 

for � 	 0, to determine the function 0, the velocity 35� and 

the density 
5�  at the interface so as to verify 
�3� 	

434 	 
5�35� . The equations (31) written at the initial 

instant � 	 0 allow to determine the constants c1, c2 and 

impose compatibility relations between the initial data on 

the interface. We so have, knowing that �5�0� 	 1, 

 

The velocity is smooth in all the flow. But its profile va-

ries in time. For the small values of time, it nullifies at the 

interface and changes sign up to the vanishing of the drop. 

Later it is constant in the flow (see Figure 1). The mass flow 

presents a shock which develops from the center of the drop 

towards its border. Its thickness and its lifetime depend on 1 

and the initial velocities of the drop and of the gas. An 

unbalanced energetic and mass layer remains attached to the 

border of the drop (see Figure 2, Figure 3). 

 

Figure 1. Evolution of the relative velocity. 

When �� is very small, the second equation (27) reduces 

to PCA
PN 	 0. The relative velocity is thus independent of the 

distance from the interface when the lifetime of the drop is 

very great compared to the characteristic time of diffusion. 

The macroscopic variables are then given when the ther-
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modynamic coefficients are constant by: 

 

For this solution, the relative velocity in the drop and in 

the gas depends only on the time. But the temperature and 

the density depend on � and on �. A shock wave whose 

characteristics depend on 1 develops from the center of the 

drop towards its border. For small values of 1 it is consi-

derable only very close to the center of the drop and does not 

reach the border. For higher values of 1 it can propagate in 

the entire drop and disappears in the neighborhood of the 

border. The mass flow is continuous on the border of the 

drop. Only the temperature presents an unbalanced boun-

dary layer attached to the border. 

 

Figure 2. Evolution of the mass flow. 

 

Figure 3. Evolution of the temperature. 

 

5. Conclusion 

We solved analytically the equations of Navier-Stokes for 

a subcritical drop in evaporation in quasi- steady conditions. 

The solution, obtained in first approximation yields reces-

sion laws that give the surface area or the squared-droplet 

diameter as a nonlinear function of time if the ratio 
*QA

 /A
 is 

independent of � in the gaseous phase. We obtain the clas-

sic �� -law when the thermal conductivity and the heat 

capacity are constant in the gaseous phase. The functions of 

time established in the section 3 are the integrals of the 

functions  85
� ,  9:5

�  which are the limits of 85  and 9:5 

when � tends towards =∞ and  ;5 . When it is assumed 

that the flow of the gaseous phase is steady (and not qua-

si-steady) all these functions become constant and we have 

��-laws  with linear functions of time.  

Assuming that the ��-law is verified, we determine the 

analytical expressions of the macroscopic variables of the 

flow and we analyze their evolution inside and outside the 

drop. We find that generally a shock wave develops from the 

center of the drop towards the border and that there is an 

energetic and mass unbalanced layer which remains attached 

to the border of the drop. The mass unbalanced layer does 

not exist when the relative velocity of the liquid phase is 

uniform. This is the case when the lifetime of the drop is 

very great compared to the characteristic time of diffusion in 

the gas. 
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